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Executive Summary 

The present report constitutes Deliverable 1.3 “Uncertainty quantification for hybrid testing”, 
developed within WP1 of VALID.  

Part A presents guidance on uncertainty quantification in hybrid testing, comprising of both 
physical testing and numerical simulations. The presented methodology is based on the 
Variational Mode and Effect Analysis (VMEA) methodology along with methodologies from the 
Guide to the expression of Uncertainty in Measurement (GUM) and from uncertainty 
quantification in numerical simulations. 

In Part B, the uncertainty analyses performed on the VALID User Cases are explained. A 
qualitative assessment was performed during a series of workshops where the insights of 
various stakeholders were gathered and categorized using the framework of basic VMEA. 
Individual sources of uncertainty were identified and ranked according to their expected impact 
as estimated by technical specialists in each of the test rigs targeted in the user cases. After 
this screening exercise, the uncertainties were quantified and aggregated using the framework 
of probabilistic VMEA.  

Lastly, Part C consists of the nomenclature and references applied in this deliverable.  
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Part A: Methodology for Uncertainty 
Quantification in Hybrid Testing  

 

The aim of Part A is to present guidance on uncertainty quantification in hybrid testing, 
comprising of both physical testing and numerical simulations. The presented methodology is 
based on the VMEA methodology along with the ISO GUM recommendation “Guide to the 
expression of Uncertainty in Measurement” and methodologies from uncertainty quantification 
in numerical simulations. 
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1 Introduction 

The design and development of Wave Energy Converters (WECs) entail making many 
decisions based on limited information about the properties of materials and components, as 
well as the environment where the final device will operate. In the present document, the term 
“uncertainty” will be intended as the condition of limited information on the actual value of 
variables that determine the capacity of WECs to perform their intended function. Uncertainty 
might affect intrinsic characteristics of the designed devices, such as material strength and 
surface roughness, or elements of the environment where they are supposed to operate, such 
as wave height and humidity.  

Limitations to the information underpinning key decisions in the design process stem from a 
variety of reasons, which reflect the presence of some form of randomness, lack of knowledge, 
or combinations thereof. An example where uncertainty in the performance of the WECs 
originates from scarcity of information is represented by the effects of ageing and exposure to 
chemically aggressive environments on the components of WECs. Long-term degradation 
mechanisms may not be well understood at early design stages. Their importance might be 
revealed by unexpected failures when the system has reached a more mature configuration, 
and several decisions on materials and components selection have already been made.  

The characterization of uncertainty in terms of randomness and incomplete knowledge is not 
unique to the development of WECs, but rather ubiquitous in engineering design. The relatively 
recent history of the WEC industry and the stochastic nature of the environmental factors to 
be considered in the sizing of the devices make uncertainty particularly prominent in designing 
these systems.  

A typical approach to assess significant uncertainty in engineering design is to introduce 
sufficiently large safety factors and / or redundancy. The selection of safety factors and 
redundancy measures might be based on the experience accumulated in the field over many 
years, possibly combined with a test campaign at different structural levels (that is, material, 
component, subsystem, complete system) and environmental conditions, in order to identify 
the most critical failure modes and their likelihood. As WECs are a relatively recent technology 
with limited standardization, field experience, and a diversified range of potential technical 
solutions, the devices must be tested extensively to rigorously assess all uncertainty sources, 
which increases development costs and slows down their introduction to the market. 
Furthermore, without a specific characterization of the various sources of uncertainty, an 
exceedingly conservative approach is likely to prevail in the design of the devices, which further 
contributes to raising their overall cost with no gain in performance and reliability. 

One of the purposes of testing is to reduce uncertainty in product development. Uncertainty 
affects physical measurements in any field of science and technology. More recently, the 
concept of virtual testing, i.e., the evaluation of product properties by means of numerical 
simulations, has become increasingly established across many industrial sectors, such as 
aerospace and automotive. As numerical simulations are only approximate representations of 
reality, uncertainty is also present in virtual testing, although the attention reserved for it is 
often limited in industrial practice.  

Uncertainty plays a significant role to support decision-making in product development, as it 
provides a consistent and transparent approach to qualify different design options. The 
confidence in a certain technical solution can be corroborated in a way that is not solely 
dependent on the subjective judgement and experience of the designer. Furthermore, the 
techniques for uncertainty quantification in physical experiments, as well as numerical 
simulations, provide practical means to improve that confidence by reducing the uncertainty in 
the design variables that mostly contribute to the uncertainty in the overall performance. 

The present document aims to introduce the WEC community to the basic concepts and 
methods of uncertainty analysis, offering practical guidance on how to apply them to hybrid 
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testing, which comprises both physical measurements and numerical simulations. The 
proposed methodology follows the VMEA approach that provides a unified computational 
framework for the evaluation of the total uncertainty (although the uncertainty from specific 
sources may be assessed via other methods). This view on the role of uncertainty 
quantification as tool to support the design and development of test procedures is supported 
by other similar approaches, see e.g., (Coleman and Steele, 2009) which provides useful 
information on applications to hybrid testing. 

The problem formulation is addressed in Section 1.1, and the structure of the report is 
presented in Section 1.2. 

1.1 Problem Formulation 

Uncertainty affects every aspect of engineering design, not only those that relate to the 
performance of the final product. Every form of risk analysis conducted at different stages of a 
project requires some consideration of uncertainty sources which might affect budget and time 
planning. In this section, the scope of this Guide is defined and the types of problems, 
encompassing the life cycle of the products, for which it is expected to support the developers 
of WECs, are specified. 

The present guide focuses on the analysis and quantification of uncertainty that characterize 
the outcomes of hybrid testing procedures, not uncertainties in the overall design process of 
WECs. Hybrid testing methodologies might target different key product characteristics of the 
WECs, and their development may parallel the level of maturity of the designed system itself, 
which will also be reflected in the uncertainty analysis. For example, the size and impact of 
uncertainty on the test results are presumably very different in proof-of-concept setups 
compared to fully developed and operating test benches.  

The goal of the VALID project is to develop novel testing platforms, methods and knowledge 
that address the challenge of the costs associated with reliability testing of WECs in the marine 
environment. Assessment of the reliability and service life of WECs is particularly challenging 
because failure might take a long time to occur in the marine environment. Components and 
subsystems of WECs are usually designed to resist very harsh environmental conditions, 
which makes it difficult to observe failures under relatively short periods. Furthermore, most 
working examples of WECs are still at concept or prototype stage, with ample margins for 
design revisions and little field experience. WEC technologies usually undergo significant 
design changes between generations, from using standard components not designed for the 
same working conditions, towards building dedicated supply chains of specialized 
components. This adds to the complexity of reliability assessment at early stages. Hence, there 
is a need to speed up the test procedures in a controlled environment to detect design flaws 
and identify potential for improvement early in the design process.  

As illustrated in VALID D1.1 and D1.2 (Bargiacchi et al., 2021; Ruiz-Minguela et al., 2021) a 
key element in the overall strategy pursued in the VALID project to address this need is to 
focus testing and analysis resources on those WEC components/subsystems whose failure 
would most severely compromise the intended function of the WECs (namely, power 
generation under a specified period of time and environment). The choice to focus the testing 
activities on critical components simplifies the assessment of system reliability at an early 
development stage, provided that the influence of the other components and subsystems can 
be adequately taken into account.  

A central question in the VALID project is whether a proper mix of physical measurements and 
numerically simulated responses (i.e., hybrid testing) might be the key to fast and accurate 
reliability testing of WECs at the early development stage. Therefore, the focus is on the 
acceleration of component development through hybrid testing, rather than on reliability 
assessment of mature technologies. 
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The co-existence of physical and virtual test environments represents a specific challenge of 
hybrid testing to Uncertainty Quantification (UQ). Furthermore, the interest in accelerated 
testing and possible differences between the dimensions of tested components and those of 
their counterparts used in the marine environment poses additional challenges that are specific 
to the type of testing procedures targeted in the VALID project, which the VALID user cases 
exemplify.  

1.2 Structure of Report  

The content of this report is articulated in the following main building blocks, which address the 
specific purposes to present the methodology and to provide the reader with guidance to 
conduct uncertainty assessment in hybrid testing independently of the user cases developed 
in the VALID project:     

Part A: Methodology for Uncertainty Quantification in Hybrid Testing 

• Section 2: Background and motivation for uncertainty quantification in physical testing, 
numerical simulations, and reliability assessments.  

• Section 3: Detailed description of the proposed methodology for UQ in Hybrid Testing, 
which is an adaptation of the VMEA methodology.  

• Section 4: Presentation of and methods for UQ in physical measurements, with special 
emphasis on the ISO recommendation GUM , (ISO/TMBG, 2008). 

• Section 5: Review of key concepts and methods for UQ in numerical simulations, with 
reference to appropriate standards and guidelines.  

• Section 6: Guidance to evaluate the impact of the outcomes of UQ on decision-making and 
reliability assessments for design and development.  

Part B: Applications to VALID User Cases 

• Section 7: Applications of the proposed methodology to the User Case #1 - CorPower. 

• Section 8: Applications of the proposed methodology to the User Case #2 - IDOM.  

• Section 9: Applications of the proposed methodology to the User Case #3 - Wavepiston. 

 
Note that Section 3 presents the methodology for UQ based on VMEA, whereas Sections 4 
and 5 provide background and details on assessing uncertainties in the physical and numerical 
environments, respectively. 

The reported examples in Part B, Sections 7-9, are based on the outcomes of a series of 
workshops where VALID project partners were invited to identify and discuss the role of 
different sources of uncertainty in each user case. The information provided by the developers 
of the testbeds considered in the user cases was quantified following the VMEA. The scope 
and goal of the workshops can be summarised as follows: 

1. First series (Basic VMEA): held during Spring of 2022, in approximately 3 sessions of 1 
hour for each user case. The main goal was to discuss the relevant sources of uncertainty, 
indicating which should be prioritized in the follow-up quantitative analysis. Uncertainty 
sources in the physical as well as virtual parts of the test beds were considered. The input 
from the participants was codified according to the qualitative rating system defined in the 
basic VMEA methodology.  

2. Second series (Probabilistic VMEA): held during the Spring of 2023, following a similar 
format as that of the first series. The analysis focused on the elements that are thought to 
contribute the most to the overall uncertainty, according to the outcomes of the first series 
of workshops. Quantitative data on the uncertainty of measured and computed input 
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variables was collected, estimated and / or judged, and combined to evaluate the total 
uncertainty of the hybrid testing procedure using the probabilistic VMEA methodology. 

 
It should be noted that the hybrid test rigs were under development during the work with the 
report, and therefore the estimated uncertainty reported in Sections 7-9 should be interpreted 
primarily as a preliminary uncertainty analysis, rather than the final estimate of the uncertainty 
in the results. In particular, the present report aims to demonstrate how such preliminary results 
may be refined as the designs of all the physical and virtual components of the test rigs evolve. 
The examples included in Sections 7-9 illustrate how uncertainty quantification can support the 
design of novel testing methods, by facilitating the early identification of key uncertainty factors 
affecting the accuracy and robustness of test results. A view on uncertainties in early 
development stages can help the rational allocation of resources in the process of the 
development of physical and virtual components of the hybrid rigs. 
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2 Background on Uncertainties and Reliability  

This section provides an overview of and background for the components of the proposed 
methodology for UQ in hybrid testing. It also gives motivation for addressing uncertainties. 
Sections 2.1 and 2.2 present a discussion on uncertainties in physical measurements and in 
numerical simulations, respectively. The reliability and uncertainty methodology, VMEA, is 
presented in Section 2.3.  

2.1 Uncertainty in Physical Measurements 

It is an empirical fact in scientific experimentation, as well as in engineering practice and many 
circumstances of everyday life, that no physical quantity (e.g., length, time, electrical current) 
can be measured with complete certainty. 

2.1.1 What is Measurement Uncertainty? 

Repeated measurements under nominally identical conditions will produce somewhat different 
values, instead of identical ones. A task such as measuring the length of a table with a 
measuring tape offers an intuitive illustration of this point: depending on how firmly the tape is 
held, or even the ambient temperature or humidity of the skin, one might expect different 
readings for the length of the table.  

The observation of the presence of multiple sources of uncertainty in this everyday example 
can be generalized to virtually any case where a measurement is performed. Uncertainty arises 
from all the elements that participate in the measurement process, which may be broadly 
categorized as:    

• Test equipment. 

• Test environment. 

• Test method. 

• Test objects. 

• Operator. 

• Unknown sources of variability. 

 

Each item in the above list can be broken down into multiple factors relevant to the quantity 
and specific circumstances targeted by the measurement procedure, as graphically illustrated 
in Figure 1. The identification of individual sources of uncertainty is an important step in the 
methodology.  
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Figure 1: General map of possible sources of uncertainty that contribute to make the results 
of the measurement of a quantity different from its true value. 

 

2.1.2 Why Consider Measurement Uncertainty? 

In everyday measurements, uncertainty is rarely a concern because the error associated to a 
crude measurement or estimation is unlikely to result in any severe consequence. However, 
there are cases where measurement uncertainty plays a significant role even in ordinary 
situations, although the end customers may not be aware of it and adequate safeguard and 
control systems are in place to reduce the impact of measurement errors on them. For 
example, fuel dispensers undergo regular inspections by independent bodies to verify that the 
variation of released fuel does not exceed a maximum value stipulated by national law (0.5% 
in Sweden, for example).  

Therefore, the importance of measurement uncertainty depends on the context of the intended 
application of the quantity being measured. Regarding measurements done at different stages 
of product development and manufacturing, for example, Syam discussed the following 
applications that motivate the quantification of uncertainty (Syam, 2021): 

1. Measurement comparison.  

2. Measurement traceability.  

3. Pre-production phase.  

4. Post-production phase.  

5. Measurement/production process improvement. 

 
Item 1 in the above list is encountered in many situations and has pervasive consequences 
beyond the purely technical level. A fair comparison of measurements is essential to establish 
mutual trust between business partners, for example buyers and suppliers of manufactured 
parts who need to agree on the dimensions of the traded products. Differences among 
measurements performed on the same object by independent parties might stem, for example, 
from the equipment, the operators, the measurement sites, or any combination thereof.  
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In general, the comparison between different measurement results is meaningful only if their 
uncertainty is taken into account in the assessment. As a practical example, the verification of 
the technical specification provided by a supplier for the electrical resistance of a component 
can be conceptualised. The manufacturer stated a nominal value of 20kΩ, but some 
independent evidence that such a value is correct is to be gathered. A third-party testing 
laboratory is then given the task to measure the resistance, and the result is compared to the 
value stated by the manufacturer. The resistance measured by the laboratory is 17kΩ. Two 
possible scenarios emerge, graphically represented in Figure 2: 

1. (Left-hand-side of Figure 2) No measurement uncertainty is provided neither from the 
manufacturer nor the independent laboratory. The discrepancy between the resistance 
values measured by the two parties might reflect the existence of an actual difference 
between the two values, or it might be just the result of some effect that was not adequately 
controlled during the test (for example, temperature, or calibration of the measuring 
equipment). There is no reason to exclude that additional measurements would not result 
in different values. Therefore, in this scenario there is no rational way to assess which of 
the two measurements is closer to the true value of the resistance.  

2. (Right-hand-side of Figure 2). The measured resistance values are provided with their 
estimated uncertainty. The range within which the true value is expected to fall turns out to 
be significantly larger for the measurement provided by the supplier than for the one done 
by the independent laboratory. Therefore, the magnitude of the uncertainty estimated in 
the two cases suggests that the value provided by the laboratory is more credible than the 
one presented by the supplier.  

 

 

Figure 2: Illustrative example of the importance of uncertainty in comparison between 
measurements. 

 

A number of comments and reflections can be made based this example:  

1. Only one measurement point is shown in order to avoid cluttering the graphical 
representation. The displayed points might be the direct outcomes of measurements, or 
the result of some operation on the raw data, such as averaging. Regardless, the 
observations about the consequences of not taking into account measurement uncertainty 
are the same.  

2. One pragmatic argument to accelerate the decision process, i.e., to establish if the 
resistance value provided by the supplier can be trusted, by avoiding the quantification of 
measurement uncertainty might be that, for the purpose of the intended application of the 
tested component, a discrepancy of 3kΩ is acceptable. Such argument is based on the 
implicit assumption that the value stated by the supplier is correct, or at least the closest to 
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the true value of the resistance. Without estimating the uncertainty in each measurement, 
that is just an assumption hardly distinguishable from a leap of faith.  

3. The quantification of uncertainty to qualify measurement results to support decision-making 
requires that the assessment of uncertainty is carried out by similar procedures and with a 
level of thoroughness that adequately minimize the risk of underestimating or 
overestimating the uncertainty. Furthermore, the process to quantify the uncertainty should 
be transparent, that is it should be possible for external parties to reconstruct how the 
various sources of uncertainty have been assessed and combined into the final result. 
Considerable efforts have been spent over the years to address these issues by promoting 
standardized terminology and common practice for the assessment of measurement 
uncertainty. Notable examples of the results of these initiatives are International 
Vocabulary of Metrology (VIM) (ISO/TMBG, 2007) and GUM (ISO/TMBG, 2008), which are 
widely internationally accepted references with applications across many scientific and 
engineering fields. 

2.1.3 Methods for Measurement System Analysis 

For Measurement System Analysis (MSA) and uncertainty quantification in physical testing, it 
is common practice to use the ISO recommendation GUM (ISO/TMBG, 2008). Each of the 
identified uncertainty sources are quantified by its sensitivity coefficient, 𝑐𝑖, and its standard 
uncertainty, 𝑢𝑖, in terms of a standard deviation. The so-called combined standard uncertainty, 

𝑢𝑦, of measurement 𝑦 is then calculated as the root sum of squares as: 

𝑢𝑦 = √∑𝑢𝑦,𝑖
2

𝑛

𝑖=1

= √∑𝑐𝑖
2 ⋅ 𝑢𝑖

2

𝑛

𝑖=1

 (1) 

where 𝑢𝑦,𝑖 is the resulting uncertainty from source 𝑖, and 𝑛 is the total number of uncertainty 

sources. 

The measurement uncertainty is often presented as an interval with a specific level of 
confidence. Typically, a 95% confidence level is used, giving an interval 𝑌 = 𝑦 ± 2 ⋅ 𝑢𝑦, where 

𝑦 is the measured value of the quantity 𝑌. Generally, the measurement uncertainty can be 
given as an interval 𝑌 = 𝑦 ± 𝑈, where 𝑈 is called the expanded uncertainty calculated as 𝑈 =
𝑘 ⋅ 𝑢𝑦, where 𝑘 is the coverage factor corresponding to the chosen level of confidence. In the 

case of 95% confidence, the coverage factor is 𝑘 = 2.  

Established methods to analyse and quantify measurement uncertainty, as well as the rigorous 
definition of the degree of confidence associated with the computed uncertainty are presented 
in Section 4, following the ISO recommendation GUM (ISO/TMBG, 2008). Additional 
information on standard terminology in the field of uncertainty analysis can be found in VIM 
(ISO/TMBG, 2007).  

2.2 Uncertainty in Numerical Simulations 

As even the most sophisticated computational models used in engineering analysis are built 
upon assumptions, simplifications of the governing physical laws and uncertain parameters, 
their outcomes are expected to deviate, to some extent, from the reality that they are designed 
to simulate. Numerical simulations can be considered a form of virtual experiments, as they 
share with their physical counterparts the capacity to produce information about the behaviour 
of entities that obey the laws of physics under various circumstances. 

2.2.1 What is Uncertainty in Numerical Simulations? 

Unless some form of randomness is intentionally introduced in the computational models, 
numerical simulations are deterministic, and hence they return exactly the same output for a 
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given input, which makes them fundamentally different from physical experiments as devices 
to generate information. The error in the results of virtual experiments is defined as their 
deviation from reference values used for validation (which are typically measured), rather than 
from a true value whose existence is convenient to assume but impossible to demonstrate. A 
consequence of this definition is that the error in a simulated quantity can be always 
determined, provided that measurement data suitable for model validation are available.  

In cases where validation data are not available, such as when physical experiments of a given 
system are unfeasible, uncertainty quantification, possibly supplemented by sensitivity 
analysis, provides some indication of the error that can be expected for the simulated results. 
In these cases, the meaning of uncertainty for numerical simulations resembles more closely 
its counterpart in physical experiments. In contrast, the way to quantify uncertainty differs 
significantly between physical and virtual experiments because repeated runs of the 
simulations for the same set of input deterministic variables and parameters will produce 
identical results, which prevents the estimation of a suitable interval where the true value is 
expected with a given confidence level. The spread in measurement results observed in 
physical experiments has to be simulated by supplementing the computational model with 
adequate mathematical representations of the uncertainty that characterizes the actual design 
variables and parameters. 

2.2.2 Why Consider Uncertainty in Numerical Simulations? 

The role of numerical simulations in engineering analysis has steadily grown in the last 
decades, boosted by the larger availability of computational resources, in the form of more 
accessible and more powerful hardware, software tools, and user-oriented interfaces. 
Numerical models enable the simulation of the behaviour of engineered systems under 
conditions which would be more costly and / or unfeasible to reproduce in a laboratory 
environment.  

As numerical simulations evolve towards a widespread technique or toolbox that are more 
accessible to designers and non-specialists in computational methods, the challenge to ensure 
their credibility becomes increasingly critical. The notion of ‘simulation governance’ has been 
introduced in the last decade as “the managerial function concerned with assurance of 
reliability of information generated by numerical simulation” (Oberkampf and Imbert, 2018; 
Szabó and Actis, 2012). Uncertainty quantification is a key element of Simulation Governance. 
The industrial perspective on uncertainty quantification in numerical simulations for the energy 
sector has been discussed in (Pasanisi and Dutfoy, 2012). For an example of the risk entailed 
by poor quality management of numerical simulations, see e.g. (Arnold, 2009).  

While noting that the methods to represent and evaluate uncertainty in computational models 
are reviewed in more detail in Section 5, the main reasons to conduct uncertainty quantification 
in numerical simulations can be summarized as follows: 

1. To assess the robustness of simulated predictions against uncertainty in design variables 
and parameters. 

2. To identify the design variables and parameters that mostly contribute to the variability of 
simulation results, thus supporting a rational allocation of resources to reduce the impact 
of the sources of variability on the performance of the designed products. 

3. To support the rational estimation of simulation error under conditions where validation 
data are not available.     

4. To enable the implementation of robust design methodologies, which target the optimal 
utilization of materials without compromising safety requirements.  

5. To enable the construction of confidence intervals or other rational measures of credibility 
for the validation of simulated results. 
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A notable example of point 5 in the context of the VALID project is given by the derivation of 
safety factors from the probabilistic analysis of uncertainty in design variables, which will be 
illustrated in more detail in the methodology presented in Section 3 and in Section 6 on design 
and reliability evaluations.  

2.2.3 Methods for Uncertainty Quantification in Numerical Simulations 

Numerical modelling and simulation are effective tools to mitigate risk and to reduce the time 
and cost of product design and development. In spite of the broad popularity of Computer 
Aided Engineering (CAE) in industrial practice, comparatively little effort is often devoted to the 
analysis and quantification of uncertainty that inevitably characterizes computational models. 
Uncertainty in input parameters, model structure, loads, and boundary conditions originate 
from the inherent variability of physical quantities, as well as from incompleteness of 
information about the object or system being modelled. The uncertainty in input is propagated 
through the numerical models, thus leading to a quantitative estimation of the spread in the 
output variables. 

UQ associated with computational models is part of the Verification and Validation (V&V) 
process, which systematically addresses the comparison between model predictions and 
experimental data. V&V and UQ are necessary activities for the credibility assessment of the 
results of numerical simulations, particularly in the case of novel engineering fields where 
standardized requirements for design and testing are not available or in safety-critical 
applications where underestimation of risk and variability may lead to hazardous 
consequences or financial loss. 

The majority of UQ methods found in industrial applications rely on probabilistic frameworks, 
wherein uncertain variables are modelled as probability distributions derived from experimental 
data and expert elicitation. Random number generators and sampling algorithms such as 
Monte Carlo and Latin Hypercube are often used to evaluate the probability distributions and 
explore the design space where the input variables and parameters are defined. 

The literature on V&V and UQ is vast and diversified, spanning areas of fundamental 
mathematics and statistics, numerical methods, and applications in virtually any field of 
engineering. For a concise and pragmatic introduction to UQ for computational models, the 
guide authored by the Stochastics Working Group at NAFEMS (National Agency for Finite 
Element Methods and Standards) is a recommended starting point (NAFEMS, 2018). A 
comprehensive guide to the expression of uncertainty for computational models can be found 
in the “Handbook of Uncertainty Quantification” (Ghanem et al., 2017). For an overview of 
existing standards for V&V and UQ in modelling and simulation, the reader is directed to the 
review by Freitas (Freitas, 2020). Additionally, Section 5 gives a more comprehensive 
overview and review of relevant methods for UQ in numerical simulations. 

2.3 Variation Mode and Effect Analysis Methodology 

The structure of the methodology for UQ in hybrid testing is based on the VMEA methodology, 
which is a probabilistic reliability and robustness methodology that studies the uncertainty 
around a nominal design. An adaption of VMEA to marine energy applications can be found in 
(Johannesson et al., 2016). Based on all uncertainty sources, the methodology determines the 
total uncertainty which can be used to derive a statistically based safety factor. The statistical 
safety factor is constructed through a confidence interval, which is determined from an overall 
standard deviation of the defined target function. Background and summary of the VMEA 
methodology is provided in this sub-section. 

An important goal of engineering design, and within marine energy applications in particular, 
is to get a reliable product. In industry, the method of Failure Mode and Effect Analysis (FMEA) 
is often used for reliability assessments, where the aim is to identify possible failure modes 
and evaluate their effects, see e.g. (Stamatis, 2003). FMEA focuses on identifying and 
eliminating known or potential failures. However, it is a qualitative method, and it does not 
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measure the resulting reliability. The failure modes are most often triggered by unwanted 
variation (Davis, 2006), and, thus, a general design philosophy, including all different sources 
of unavoidable variation, has been developed. This reliability and robust design methodology, 
named VMEA, was first presented in (Chakhunashvili et al., 2004; Johansson et al., 2006) and 
was further developed in (Chakhunashvili et al., 2009; Johansson et al., 2006; Svensson et 
al., 2009). A more general presentation of the methodology can be found in (Bergman, 2009; 
Johannesson et al., 2016, 2013; Johannesson and Speckert, 2013; Svensson and 
Johannesson, 2013). The VMEA concept takes the quantitative measures of failure causes 
into account. The method is based on statistics, reliability, and robust design, which can guide 
engineers to find critical areas of unwanted variation. The technique has been successfully 
implemented for fatigue design and maintenance in the automotive and aeronautic industries 
(Johannesson et al., 2009; Svensson et al., 2009), as well as in the marine energy field (Jia et 
al., 2017; Johannesson et al., 2022, 2019, 2016). 

2.3.1 Generic Principles of VMEA 

Generally, the VMEA method is described as evolving through three different phases during 
design, as illustrated in Figure 3.  

 

 

Figure 3: VMEA in different design stages. 

 

The first phase is the basic VMEA, where sensitivities and uncertainty sizes are judged on a 
scale from 1 to 10. The basic VMEA is used in the early design stage when the knowledge of 
uncertainties is limited, and the assessment is often built upon engineering judgements from a 
cooperative brainstorm session. It aims to provide a high-level overview of the effect(s) of the 
different uncertainties, serving as a tool for identifying the major uncertainty contributions. The 
basic VMEA is primarily used to screen for uncertainty sources and can thus be used for 
prioritisation for further studies.   
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A refinement of the basic VMEA may be done by quantifying uncertainties, by judging their 
standard deviations by means of standard rules and by judging sensitivities by fundamental 
physical knowledge; again the assessment is typically based on engineering judgements. The 
analysis is called an enhanced VMEA and can be used for a preliminary assessment of the 
uncertainty sources and the resulting measurement uncertainty. 

The final stage, called the probabilistic VMEA, is made possible when more information is 
available about the most critical uncertainty sources. Standard deviations are typically obtained 
by more detailed studies of empirical results. Sensitivity coefficients can be found from 
numerical sensitivity studies or differentiation of physical/mathematical models. The result of 
such an analysis gives an estimate of the resulting total uncertainty and a corresponding 
statistical safety factor. 

The general procedure for performing a VMEA is common for all development phases. The 
work process can be split into four activities “Define-Analyse-Evaluate-Improve”, as illustrated 
in Figure 4. These seven steps listed in Figure 4 will be described in more detail in 
Section 3.1.2. 

 

 

Figure 4: VMEA in the design and improvement cycle. 

 

2.3.2 Mathematical and Statistical Principles of VMEA 

The VMEA method represents a first-order, second-moment reliability method that studies the 
variation and uncertainty around a nominal design. The underlying mathematical and statistical 
principles of VMEA are presented in this sub-section. 

The target function, often also referred to as the response function, can be defined as: 

𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) (2) 
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where 𝑦 is the target variable, also called response or output variable, and 𝑥𝑖 are the input 
variables. The target function describes the relation between the input variables and the target 
variable, and it can be, for example, the fatigue life, the maximum stress, or the maximum 
defect size.  

The evaluation of the statistical properties of the target variable is of interest, assuming that 
the input variables are random variables characterized by their mean and standard deviation. 
The Gauss’ approximation formula is used, which is based on linearizing the target function: 

y = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) ≈∑𝑐𝑖 ⋅ xi

𝑛

𝑖=1

 (3) 

where 𝑐𝑖 is the partial derivative of the target function 𝑓 with respect to 𝑥𝑖, namely:  

𝑐𝑖 =
𝜕𝑓

𝜕𝑥𝑖
(𝑥1,𝑟, 𝑥2,𝑟, . . . , 𝑥𝑝,𝑟) (4) 

evaluated at a reference point, typically chosen to be the mean value of the input variables. As 
stated above, the sensitivity coefficient 𝑐𝑖 is formally the partial derivative of the target function 

𝑓 with respect to 𝑥𝑖; however, in practice, it is often best approximated by a difference quotient.  

Using Gauss’ approximation formula, the mean and standard deviation can be evaluated. The 
random variables corresponding to the target variable and the input variables are denoted by 
𝑌 and 𝑋𝑖, respectively. The mean value of the target variable is evaluated as: 

E[𝑌] = E[𝑓(𝑋1, 𝑋2, . . . , 𝑋𝑛)] ≈ 𝑓(E[𝑋1], E[𝑋2], . . . , E[𝑋𝑛]) (5) 

where E[⋅] denotes the expected value. 

The standard deviation, being the square root of the variance, can then be approximated using 
Gauss’ approximation formula: 

Var[𝑌] = Var[𝑓(𝑋1, 𝑋2, . . . , 𝑋𝑛)] ≈∑𝑐𝑖
2Var[𝑋𝑖]

𝑛

𝑖=1

+ Covariances (6) 

This formula gives the variance of the target variable 𝑌 as the sum of variance contributions 
(and possible covariances) from different influencing random variables 𝑋𝑖, each described by 

its own variance, Var[𝑋𝑖], together with its influence by means of the sensitivity coefficient 𝑐𝑖. 
Covariances between the influencing variables may also contribute, however they can usually 
be neglected or avoided by re-formulating the model. 

In summary, the VMEA method is based on characterising each uncertainty source by its mean 
and statistical standard deviation, which corresponds to a second-moment method. Further, it 
approximates the target function by means of its sensitivity coefficients with respect to the 
target variables, which corresponds to a first-order method. The nominal value of the target 
variable is evaluated according to Eq. (5). The total prediction uncertainty, here denoted by 𝑢𝑦 

in accordance with the standard notation in measurement uncertainty, is derived by using the 
root sum of squares of the uncertainties: 

𝑢𝑦 = √∑𝑢𝑦,𝑖
2

𝑛

𝑖=1

= √∑𝑐𝑖
2 ⋅ 𝑢𝑖

2

𝑛

𝑖=1

 (7) 

where 𝑢𝑦,𝑖 is the resulting uncertainty from source 𝑖, and is calculated as the product of the 

sensitivity coefficient |𝑐𝑖| and the standard deviation 𝑢𝑖 of source 𝑖. The total number of 
uncertainty sources is 𝑛. Note that the VMEA method is a so-called second-moment method, 
since it uses only the standard deviation to characterise the distribution of the uncertainty 
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sources. Further, it approximates the target function by means of its sensitivity coefficients with 
respect to the input variables, which corresponds to a first-order method. 

2.3.3 Evaluation of Reliability and Uncertainties 

The results from the uncertainty assessment can be used for reliability evaluations and for 
deriving safety factors. Some assumption on the distribution of the target variable is necessary 
for the statistical analysis. Often the central part of the distribution of the target variable may 
be well approximated by a normal distribution. An approximate confidence interval for the 
target variable can then be calculated as 𝑌 = 𝑦 ± 𝑘 ⋅ 𝑢𝑦, compare Section 2.1.3. Often the 

target function is in logarithmic form, and then by taking the exponential of the confidence 
interval a corresponding safety factor can be obtained. Further discussions on these topics are 
found in Section 6. 
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3 Methodology for Uncertainty Quantification in 
Hybrid Testing 

In hybrid testing, which involves both physical and numerical models, there is a need to assess 
the quality of the result. Therefore, the uncertainty of the output of the hybrid tests should the 
investigated, and the uncertainty should be evaluated in a systematic way.  

The proposed methodology for UQ in accelerated hybrid testing is based on three 
methodologies presented in Sections 2.1-2.3: 

• ISO recommendation GUM (ISO/TMBG, 2008), which was introduced in Section 2.1 and 
is described in detail in Section 4. 

• UQ methodology in numerical simulations, which was introduced in Section 2.2 and 
methods reviewed in Section 5. 

• VMEA, which was described in Section 2.3, and will here be adapted to the hybrid testing 
set-up. 

 
The aim for this section is to present the methodology for UQ in hybrid testing. The general 
work process will follow the VMEA methodology, which is similar to that detailed in GUM. The 
main steps in the suggested methodology for UQ in hybrid testing are: 

• Define the output quantity to be evaluated, i.e., the target variable. 

• Identify the uncertainty sources, that are classified as random or systematic. 

• Assess uncertainty sources in terms of their sensitivities and uncertainty sizes. 

• Combine the uncertainty sources into a combined measurement uncertainty for the hybrid 
testing. 

 
First, in Section 3.1, the general work process is described. The identification and classification 
of uncertainties are discussed in Section 3.2. The methodology implemented for the concept 
stage is described in Section 3.3, and is based on the basic VMEA approach, where the aim 
is to identify and assess, at a high-level, the major uncertainty sources. For the final design 
stage, the methodology for assessing the measurement uncertainty is detailed in Section 3.4, 
based on the probabilistic VMEA approach. 

3.1 General Work Process 

The general work process for VMEA adopted for UQ in hybrid testing is described in the 
following sub-sections. 

3.1.1 Different Development Stages 

Two stages of uncertainty quantification, as illustrated in Figure 5, are recommended for hybrid 
testing of critical components: 

1. Concept phase – where the goal is to assess the main uncertainty sources for the concept 
or prototype test rig that is in development. In this phase the basic VMEA approach can be 
used. 

2. Finalized design phase – where the goal is to assess the measurement uncertainty for the 
output quantities of hybrid test rig. In this phase the probabilistic VMEA approach can be 
used. 
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The IEA-OES guidance framework, (IEC TS 62600-103, 2018) for evaluation of ocean energy 
technology, also based on stage activities, describes Stage 1 as concept development and 
Stage 2 as design optimisation, which aligns with the two phases above. Moreover, there are 
suggested stage activities for assessing reliability. 

 

 

Figure 5: Test rig development stages, basic & probabilistic VMEA. 

 

3.1.2 Work Process 

Following the general VMEA work process described in Section 2.3 and illustrated in Figure 4, 
the work process for UQ in hybrid testing can be grouped into four activities “Define-Analyse-
Evaluate-Improve”. The work process is described by the following seven steps: 

1. Target variable definition:  The first step is to define the target variable, i.e., the property to 
be studied, which can. e.g., be the life of a component, the maximum stress or the largest 
defect. 

2. Uncertainty source identification:  In this step all sources of uncertainty that can have an 
impact on the target variable are identified and categorised into either load or strength 
group. The uncertainty sources may be classified as scatter, statistical and model 
uncertainties. 

3. Sensitivity assessment:  Here the task is to evaluate the sensitivity coefficients of the 
sources of uncertainty with respect to the target variable by numerical calculations, 
experiments, previous experience etc. 

4. Uncertainty size assessment:  Here the task is to quantify the size of the different sources 
of uncertainty by experiments, previous experience, engineering judgement etc. 

5. Total uncertainty calculation:  The final step of the core VMEA activity is to calculate the 
total resulting uncertainty in the output of the target function by combining the contributions 
from all uncertainty sources according to their sensitivities and sizes. 
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6. Reliability and robustness evaluation:  The result of the VMEA can be used to evaluate the 
reliability and robustness in order to compare design concepts, find dominating 
uncertainties, derive safety factors etc. 

7. Improvement actions:  The last important step is to feedback results into the improvement 
process by identifying uncertainty sources that are candidates for improvement actions and 
evaluate their potential for reliability improvements. 

 
Although the core VMEA methodology constitutes steps 2-5, the problem definition (step 1), 
reliability evaluation (step 6) and improvement work (step 7) are equally essential in the design 
process. Therefore, all seven steps are included in the overall VMEA methodology to cover 
the design and improvement cycle illustrated in Figure 4. 

3.2 Identification and Classification of Uncertainty  

The understanding of uncertainty sources is a key issue in assessing measurement uncertainty 
as well as in engineering design. Therefore, this section is devoted to the identification and 
classification of uncertainties. 

3.2.1 Identification of Uncertainty Sources  

Identifying the important uncertainty sources is a difficult task, where a combination of 
individual creativity and brainstorming could be recommended. To aid in the work of 
identification, it is often useful to have some kind of structure. In the automotive industry, five 
categories of uncertainties in engineering design are often used. These have been adopted to 
the hybrid testing for wave energy applications, and the following five categories of uncertainty 
sources are suggested: 

• Environmental conditions – External environmental conditions that the products/devices 
are exposed to. 

• Physical test rig – Uncertainties related to the physical test set-up. 

• Numerical test rig – Uncertainties related to the numerical models and simulations test 
set-up.  

• Life modelling – Uncertainties related to life and wear-out modelling including, e.g., 
acceleration methods, scaling methods and potential errors in life modelling. 

• Manufacturing – Uncertainties related to manufacturing, assembly and mounting of 
component/product. 

 
The five categories are illustrated in Figure 6, where they are also connected to the pre-

processing, processing and post-processing steps introduced in VALID D1.1 (Bargiacchi et al., 

2021). Below some guidance on typical uncertainty sources within the five categories is 

presented. 
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Figure 6: Five categories of uncertainty sources. 

 

3.2.1.1 Environmental Conditions  

This category contains uncertainty sources due to external environmental conditions that the 
products/devices are exposed to. Typical uncertainties to consider are: 

• Waves conditions – characterized by e.g. wave height and period, (𝐻𝑠, 𝑇𝑝). 

• Currents. 

• Wind. 

• Bio fouling. 

• Sea water salinity. 

• Sea water temperature. 

 

3.2.1.2 Physical Test Rig 

 Uncertainties related to the physical test set-up. Typical uncertainties to consider are: 

• Measurement uncertainty and control of signals, e.g., position, pressure, temperature. 

• Mounting of specimen in test rig. 

• Tolerances of specimen. 

• Application of loads in test rig vs. real device operation. 

 

3.2.1.3 Numerical Test Rig 

Uncertainties related to the numerical models and simulations. Typical uncertainties to 
consider are: 

• Modelling error. 

• Domain error. 

• Discretization error. 

• Boundary conditions and load application. 
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3.2.1.4 Life Modelling  

Uncertainties related to life and wear-out modelling including e.g., acceleration methods, 
scaling methods and potential errors in life modelling. Typical uncertainties to consider are: 

• Modelling error in life model. 

• Acceleration methods. 

• Scaling methods. 

• Marine growth effects. 

• Corrosion effects. 

 

3.2.1.5 Manufacturing 

Uncertainties related to manufacturing, assembly and mounting of components. Typical 
uncertainties to consider are: 

• Tolerances. 

• Variation in material properties. 

• Assembly and mounting of components. 

 

3.2.2 Classification of Uncertainties 

3.2.2.1 Random or Systematic Effects 

In GUM (ISO/TMBG, 2008), the uncertainty sources that give rise to uncertainty in 
measurement are classified as: 

• Random - where repeating the measurement gives a randomly different result. Hence, 
repeated measurements give more knowledge, and by averaging the results a better 
estimate is obtained through diminishing random errors.  

• Systematic - where the same influence affects the result for each of the repeated 
measurements. In this case, nothing extra is learned by simply repeating measurements. 
Other methods are needed to estimate uncertainties due to systematic effects.  

 
These types of uncertainties are important to distinguish, since random effects can be reduced 
by repeated measurements, while systematic effects will not diminish. 

3.2.2.2 Aleatory and Epistemic Uncertainties 

There are more detailed and systematic ways in which the types of uncertainties may be 
classified, see e.g. (Melchers and Beck, 2018) and (Ditlevsen and Madsen, 2007). The first 
classification is, as above, to distinguish between random and systematic effects, and these 
types of uncertainties are here called aleatory uncertainties and epistemic uncertainties. The 
first one refers to the underlying, intrinsic uncertainties, e.g., the scatter or random 
uncertainties that may originate from load variation or uncontrollable strength variation. The 
latter one refers to the uncertainties due to lack of knowledge, which can be reduced by means 
of additional data or information, better modelling and better parameter estimation methods.  

In (Melchers and Beck, 2018) a detailed breakdown of different kinds of uncertainties is 
presented. In the uncertainty assessments, the focus is often on three kinds of uncertainties, 
also mentioned by (Ditlevsen and Madsen, 2007): 
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• Random uncertainty or physical uncertainty, which is an uncertainty identified with the 
inherent random nature of the phenomenon, e.g., the variation in strength between different 
components. Sometimes it is also called scatter, randomness or noise. 

• Statistical uncertainty, which is an uncertainty due to the statistical estimation of model 
parameters based on available data, e.g., the estimation of the uncertainty of parameters 
in a regression model describing the life as a function of the load level. Generally, the 
observations of the variable do not represent it perfectly and as a result there may be bias 
in the data recorded. In addition, different sample data sets will usually produce different 
statistical estimates. This causes statistical uncertainty. 

• Model uncertainty, which is the uncertainty associated with the use of one (or more) 
simplified relationships to represent the ‘real’ relationship or phenomenon of interest, e.g., 
a finite element model used for calculating stresses, is only a model for the ‘real’ stress 
state. Modelling uncertainty is often due to lack of knowledge, and can be reduced with 
research, refinement of models or increased availability of data. 

 
The first type of uncertainty, random uncertainty, is an aleatory uncertainty, whereas the others 
should be regarded as epistemic uncertainties, as they can be reduced through better 
knowledge. 

Another important kind of uncertainty is the uncertainties due to human factors. These are the 
uncertainties resulting from human errors or involvement in the design, system, use, etc. 
Failures caused by misuse, gross errors and human mistakes should primarily be subject to 
quality management procedures.  

3.3 Concept Stage – Basic VMEA 

The basic VMEA procedure, see (Chakhunashvili et al., 2004; Johansson et al., 2006), is 
detailed in this sub-section. Recall that the goal of the basic VMEA is to identify the most 
important sources of uncertainty, and the sizes of the sources of uncertainties as well as their 
sensitivities, which are evaluated on a scale from 1 to 10. The variation is characterized by the 
summing of the square of the product of the sensitivity and the uncertainty size. To conduct an 
adequate VMEA that incorporates different views and competences, a cross-functional team 
of engineers and experts should be formed. Such an analysis can indicate which part of the 
hybrid testing is most critical in terms of uncertainty, and hence, that needs special focus in 
the design and set-up of the testing. 

3.3.1 Target Variable Definition 

The first step in the procedure is to define the target variable, i.e., the output quantity of the 
experiment for which the measurement of the uncertainty shall be evaluated. For wave energy, 
the target variable is often some property of a critical component or sub-system, typically it can 
be the maximum stress, the life, or the friction force. 

3.3.2 Uncertainty Sources Identification 

The goal in this step is to identify all major sources of uncertainty that affect the target variable, 
and especially here it is recommended to have a cross-functional team of engineers. A 
previously performed Failure Mode, Effects and Criticality Analysis (FMECA) can give valuable 
input. When identifying uncertainty sources, it can be helpful to think about the different types 
of uncertainties. Uncertainties can be classified due to their nature. The first kind of uncertainty 
is due to random variation, while the second kind is due to the lack of knowledge, for example 
when modelling the product characteristics or estimating model parameters. In the basic VMEA 
the focus is on the random variation, but also other uncertainties, such as possible model 
errors, should be included. A detailed discussion on identifying and classifying uncertainties 
are found in Section 3.2. 
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A useful way to illustrate the uncertainties is through a fishbone (or Ishikawa) diagram, which 
is a graphical tool to explore and visualize the causes of a problem as well as the factors 
affecting the outcome of a process or the property of a product. An example of the application 
of fishbone diagrams to analyse cause-effect relationships and optimize manufacturing 
processes is described in (Johansson et al., 2006). In that case, the “effect” of interest was the 
inner diameter of a valve used in industrial refrigeration systems. A team of experts discussed 
the role played by several factors in the manufacturing process of the valve and visualized 
them as the fishbone diagram shown in Figure 7. Mapping out all the factors involved in the 
manufacturing process and their associated uncertainty provided a solid ground to estimate 
the expected uncertainty for the diameter of the valve and to design appropriate optimization 
strategies. That was an example of how the outcome of cause-effect analysis can facilitate the 
execution of VMEA. 

 

 

Figure 7: Example of complete fishbone diagram for a manufacturing problem; (Johansson et 
al., 2006). 

 

3.3.3 Sensitivity Assessment 

The sensitivity and uncertainty size assessments are often executed in parallel. The 
assessments are evaluated on a 1-10 scale, and are based mostly on engineering experience, 
judgements and informed guesses. The description by (Johansson et al., 2006) is followed.  

In the second step of the VMEA procedure, engineers assess the sensitivity of the target 
variable to the influence of each identified uncertainty source. To assess sensitivities, 
engineers can use objective measures or subjective assessments based on their experience 
and theoretical knowledge. Since it is not always possible to obtain objective measures, 
especially in the early phases of development, subjective assessment is proposed for 
capturing engineering knowledge. The assessment is based on a scale ranging from 1 to 10, 
where 1 corresponds to very low sensitivity and 10 corresponds to very high sensitivity. The 
criteria are given in Table 1. 
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Table 1: Sensitivity assessment criteria for Basic VMEA. 

Sensitivity Criteria for assessing sensitivity Score 

Very low The uncertainty is (almost) not at all transmitted  1—2 

Low The uncertainty is transmitted to a small degree 3—4 

Moderate The uncertainty is transmitted to a moderate degree 5—6 

High The uncertainty is transmitted to a high degree 7—8 

Very high The uncertainty is transmitted to a very high degree 9—10 

 

3.3.4 Uncertainty Size Assessment 

In the third step of the VMEA procedure, engineers examine uncertainty sources and assess 
their sizes in operating conditions. In Table 2 subjective assessment criteria are proposed for 
capturing engineering knowledge about the magnitude of uncertainty. The assessment is 
based on a scale ranging from 1 to 10, where 1 corresponds to very low uncertainty and 10 
corresponds to very high uncertainty. 

 

Table 2: Uncertainty size assessment criteria for Basic VMEA. 

Uncertainty Criteria for assessing sensitivity Score 

Very low The uncertainty source is considered to be almost constant 
in all possible conditions 

1—2 

Low The uncertainty source exhibits small fluctuations in all 
possible conditions 

3—4 

Moderate The uncertainty source exhibits moderate fluctuations in all 
possible conditions 

5—6 

High The uncertainty source exhibits high fluctuations in all 
possible conditions 

7—8 

Very high The uncertainty source exhibits very high fluctuations in all 
possible conditions 

9—10 

 

3.3.5 VMEA Table and Total Uncertainty Calculation 

The importance of the different sources in the basic VMEA is characterized by the so-called 
Variation Risk Priority Number (VRPN) which is calculated for each source: 

𝑉𝑅𝑃𝑁 =∑𝑉𝑅𝑃𝑁𝑖

𝑛

𝑖=1

=∑𝑐𝑖
2 ⋅ 𝑢𝑖

2

𝑛

𝑖=1

 (8) 

where 𝑉𝑅𝑃𝑁𝑖 is the variation contribution due to source 𝑖, which is the square of the product 

of the sensitivity, 𝑐𝑖, and the uncertainty, 𝑢𝑖. 

The result of the basic VMEA is well suited to be presented in a so-called VMEA table, see 
Table 3 below for an illustrative example, presenting the identified uncertainty sources together 
with the assessed sensitivities and uncertainty sizes. The resulting uncertainties and the 
VRPNs are presented together with the proportion of the variance contributions of the sources. 
The last row of the VMEA table presents the total uncertainty and VRPN. 
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Table 3: Example of a Basic VMEA for a dynamic seal. 

 

 

3.3.6 Evaluation and Improvement Actions 

The result of the basic VMEA is mostly used to evaluate the robustness of the test rig design 
and set-up. Typical applications are to compare design concepts and to find dominating 
uncertainty sources. The feedback to the improvement process can be the dominating 
uncertainty sources that should be studied in more detail or that could be candidates for 
improvement actions. 

The relative contribution of uncertainties should be studied in terms of VRPN (i.e., in terms of 
variance), which is shown in column “VRPN proportion” in Table 3. However, it is best 
illustrated in terms of graphs, e.g., using a pie chart as in Figure 8. Another alternative is to 
use a Pareto chart, see Figure 9, where the uncertainty sources are sorted according to their 
resulting VRPN and illustrated as a bar diagram together with a line showing the cumulative 
VRPN. 
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Figure 8: Pie chart of VRPN for dynamic seal example, Table 3. 

 

 

Figure 9: Pareto chart of VRPN for dynamic seal example, Table 3. 

 

3.4 Final Design Stage – Probabilistic VMEA 

The main difference between probabilistic and basic VMEA is that the probabilistic one 
evaluates final quantitative measures on uncertainty. The quantitative measures are the same 
as for the enhanced VMEA, namely, 1) sensitivities by means of mathematical sensitivity 

3%
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4%
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14%
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20%

VRPN Contribution by Uncertainty source
Total travelled distance (TTD)

Lubrication oil flow and quality
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Discretization errors
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coefficients and 2) measures of uncertainty or dispersion by means of statistical standard 
deviations. 

3.4.1 Target Function Definition 

In this stage the target variable, also called measurand in the terminology of measurement 
uncertainty, needs to be specified in more detail, e.g., in terms of units of inputs and output 
variables. 

Formally the target variable can be formulated as a target function of input variables:  

𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) (9) 

where 𝑦 is the response and 𝑓(⋅) is the target function depending on the input parameters 

𝑥1, 𝑥2, … , 𝑥𝑛, which represent the sources of uncertainty. 

The output of the target function in the VMEA concept is regarded as a random variable and, 
in many cases, its logarithmic form makes the procedure more stable. There are mainly two 
reasons for this, namely 1) The linear approximation used when combining uncertainty sources 
often becomes more accurate, and 2) the uncertainty measure, the standard deviation, 
becomes more stable (constant) within the range of interest. 

3.4.2 Uncertainty Sources Identification 

Methods for finding all possible sources of uncertainties are the same for probabilistic VMEA 
as for basic VMEA. However, in order to evaluate the probabilistic VMEA each source of 
uncertainty must be represented by a measurable quantity that can be characterised by a 
nominal value and a standard deviation. 

In the later design stages, it is important to consider all types of uncertainty, not only scatter 
sources, but also statistical uncertainties and possible model errors. The classification of the 
different types of uncertainties is recalled: 

• Scatter or physical uncertainty which is that identified with the inherent random nature of 
the phenomenon, e.g., the variation in strength between different components.  

• Statistical uncertainty which is that associated with the uncertainty due to statistical 
estimation of physical model parameters based on available data, e.g., estimation of 
parameters in a life model based on test data.  

• Model uncertainty which is that associated with the use of one (or more) simplified 
relationship to represent the 'real' relationship or phenomenon of interest, e.g., a finite 
element model for the relation between outer loads and local stresses. 

 
Scatter cannot be avoided, while the last two types of uncertainties can be decreased by 
gaining more data or by building better models. Further, in testing, random sources may be 
diminished by multiple measurements. Therefore, it is important to distinguish between 
random and systematic effects. 

3.4.3 Sensitivity Assessment 

The VMEA procedure, as well as GUM, is a simplification in mainly two respects. The first 
one is that the statistical evaluation is based only on second order moments, which means 
that only variances (or standard deviations) are used to specify the statistical property of an 
uncertainty component. The other important simplification is that the total variance is based 
on a linearization of the transfer function from influential variables to the target variable. 
These linear approximations make it sufficient to use a sensitivity coefficient for each 
variable.  
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Formally, the sensitivity coefficient with respect to the 𝑖:th uncertainty source, is the partial 
derivative: 

𝑐𝑖 =
𝜕𝑓

𝜕𝑥𝑖
(�̃�1, �̃�2, . . . , �̃�𝑛) (10) 

where �̃�𝑖 is the nominal value of the actual variable, and 𝑓(⋅) is the target function.  

However, in practice it is often easier and more robust to evaluate the sensitivity coefficient 
using difference quotients, see (Svensson and de Maré, 2008). Then the sensitivity 
coefficient can be evaluated using a difference quotient, namely: 

𝑐𝑖 =
𝑓(�̃�1, … , �̃�𝑖 + 𝑢𝑖, … , �̃�𝑛) − 𝑓(�̃�1, … , �̃�𝑖 − 𝑢𝑖, … , �̃�𝑛)

2𝑢𝑖
 (11) 

where and 𝑢𝑖 is the standard deviation of this variable. Note that the steps should be chosen 
in the order of typical variations of the input variable; here it is chosen to one standard 
deviation. More details on evaluating sensitivity coefficients are found in Sections 4 and 5. 

3.4.4 Uncertainty Size Assessment 

Each source of uncertainty needs to be characterised by means of its possible uncertainty. In 
probabilistic VMEA the standard deviation is used. The standard deviation is a statistical 
measure and defined as the square root of the variance. The variance in turn is formally defined 
as the mean of all squared distances from the mean value of the population.  

In many situations a logarithmic transformation is useful, e.g., when studying positive 
quantities. The reason for using the standard deviation of the logarithmic property is twofold, 
1) engineering relations are often very well described as straight lines in log-log diagrams 
and the variation around such a line has similar spread around it for the magnitudes of 
interest, 2) the standard deviation of the logarithmic property is approximately the same as 
the coefficient of variation of the property itself, namely:  

std(ln𝑋) ≈
std(𝑋)

E[𝑋]
 (12) 

where std is the standard deviation and E[𝑋] is the mean value (or population mean). This 
means that it is easy to use engineering judgements for estimates by means of percentage 
uncertainty, if a property has an uncertainty of 10%, the standard deviation of its natural 
logarithm is approximately 0.10.  

Based on these statistical definitions, methods for estimating the uncertainties for input 
variables to the VMEA analysis can be outlined. 

3.4.4.1 Type A: Evaluate Uncertainty from Statistical Observations 

A standard uncertainty evaluated from a statistical sample is in GUM denoted type A 
uncertainty, see Section 4.4.1. Consider a sample from a population that is representative for 
the input variable. Then this sample may be used to estimate both its expected value, �̅�, and 

its standard deviation, 𝑠:  

�̅� =∑𝑥𝑖

𝑛

𝑖=1

,𝑠2 =∑(𝑥𝑖 − �̅�)2
𝑛

𝑖=1

 (13) 

The average and standard deviation are uncertain themselves, and standard statistical theory 
is used to account for this. Namely, the standard deviation is multiplied with a constant which 
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depends on the number of samples behind its estimation. This constant is based on the 
statistical t-distribution1 and is found in Table 4. Thus, the uncertainty is estimated as: 

𝑢 = 𝑡(𝑛) ⋅ 𝑠 
 

(14) 

Further, the uncertainty of the average value depends both on the standard deviation and the 
number of samples and equals the standard deviation divided by the square root of the number 
of samples. 

 

Table 4: Values for the t-correction factor. 

𝑛 2 3 4 5 6 7-10 11-26 27- 

𝑡(𝑛) 6.5 2.2 1.6 1.4 1.3 1.2 1.1 1.0 

 

3.4.4.2 Type B: Evaluate Uncertainty from Interval Judgements 

When no statistical sample is available, the standard deviation must be assessed in other 
ways, which is referred to type B uncertainty in GUM, see Section 4.4.2. A useful method in 
engineering is to estimate an interval that is assumed to contain most variation for a property. 
A typical situation for this application is for geometric tolerances. Such an interval may be 
transformed to a standard deviation by assuming that the statistical distribution of variation 
within the interval is uniform, i.e., the probability is the same for all points within the interval. 
This is often a somewhat conservative assumption, but without detailed knowledge about the 
distribution it is the most practical solution.  

It can be convenient to assess a type B uncertainty from an independent input variable though 
direct estimation of its contribution to the uncertainty of the target variable. When it is difficult 
to quantify the input entity and/or the sensitivity coefficient, one can make an effort to estimate 
the variation in the target variable that is caused by the input uncertainty directly. Consider for 
instance the difficulty in quantifying the amount of pollution in the water and its influence on 
wear of a seal. Experience or judgment can be used to describe the variation in the wear 
directly and, consequently, set the sensitivity to one. 

If a property is assumed to vary within the interval 𝑥 ± 𝑑, then, assuming a uniform distribution, 
the standard deviation is:  

𝑢 =
𝑑

√3
 (15) 

Model errors are often hard but necessary to take into account. The solution is to use 
engineering experience and physical understanding to make judgements about the possible 
error that a certain approximation may introduce. The uniform distribution is an important tool 
to include possible model errors. Material specifications are usually found from laboratory 
experiments which differ from the conditions in service. Finite element procedures most often 
contain approximations by means of boundary conditions and resolution.  

In most cases, judgements are best expressed as possible percentage error. If such an error 
is judged by means of the target variable, then it can be interpreted as a possible error interval, 
and by using the uniform distribution assumption it can be transformed to a standard deviation 
for the logarithmic properties, ±p% error is transformed to the standard deviation according to 
Eq. (15). 

 

1 The number is the 2.5% quantile in the statistical t-distribution with n-1 degrees of freedom divided by 
the 2.5% quantile in the normal distribution, which corresponds to the t-distribution with infinite degrees 
of freedom. 
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More details on evaluating uncertainty size are found in Sections 44 and 55. 

3.4.5 Total Uncertainty Calculation 

The total uncertainty, 𝑢𝑦, in the target variable, y, is calculated by combining all the 

contributions from all uncertainty sources: 

𝑢𝑦 = √∑𝑢𝑦,𝑖
2

𝑛

𝑖=1

= √∑𝑐𝑖
2 ⋅ 𝑢𝑖

2

𝑛

𝑖=1

 (16) 

where 𝑢𝑦,𝑖 is the resulting uncertainty from source 𝑖, and is calculated as the product of the 

absolute sensitivity coefficient |𝑐𝑖|, and the uncertainty 𝑢𝑖 of source 𝑖. The total number of 

uncertainty sources is 𝑛. 

The inputs and results of the uncertainty assessment can be presented in a VMEA table, also 
called uncertainty budget, where all uncertainty sources are listed together with assessment 
of sensitivity and uncertainty size, see Table 5 for an illustrative example of the life of a dynamic 
seal. The table also presents the total combined measurement uncertainty, and the variation 
proportion of the uncertainty sources. 

 

Table 5: Example of a Probabilistic VMEA for a dynamic seal. 

 

 

3.4.6 Reliability and Robustness Evaluation 

Measurement uncertainty is often given as an interval 𝑦 ± 2 ⋅ 𝑢𝑦, representing a confidence 

level of 95%. The term 2𝑢𝑦 is called the expanded uncertainty and is generally given by 𝑈 =

𝑘 ⋅ 𝑢𝑦, where 𝑘 is called the coverage factor for the chosen level of confidence. 
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The illustrative example in Table 5 studies the life of a seal, and the target variable is there 
defined as the logarithmic life, 𝑌 = ln𝑁. Thus, the assessment is in percentage uncertainty, 

and the measurement uncertainty is estimated to 𝑢𝑦 = 36%. The expanded uncertainty, 

corresponding to a 95% confidence level, is calculated to 𝑈 = 2 ⋅ 𝑢𝑦 = 72%. The uncertainty 

interval for the logarithmic life, ln𝑁, is thus: 

ln𝑁 = ln �̂� ± 0.72 (17) 

where �̂� is the experimental life. Then, the interval in life is calculated as: 

𝑁 = exp(ln �̂� ± 0.72) = [0.49 ⋅ �̂�; 2.05 ⋅ �̂�] (18) 

Note that in this case the uncertainty interval represents about a factor two in life. 

The reliability target is often that the target function should exceed some limit with a proper 
safety margin. For more details, see Section 6.3. 

3.4.7 Improvement Actions 

An important part in the design process is the improvement stage, where the VMEA can be of 
help for identifying areas of improvement and evaluating their potential effects. The first task 
is to identify uncertainty sources that may be candidates for improvement actions.  

Improvement measures should concern all three categories: 

• Physical test set-up: A part of the test rig design phase is to set the tolerances. The VMEA 
can help to identify tolerances that have a large impact on the total uncertainty, and thus 
are candidated for improvements by tightening the tolerance. On the other hand, there may 
be tolerances that are set too tight and could be relaxed without giving an impact on the 
total uncertainty.  

• Numerical simulation: The numerical part of the hybrid test set-up involves several types 
of uncertainties, including model simplifications, and numerical errors.   

• Life and acceleration models: If the uncertainty in the life model is large, it can be 
motivated to perform tests on the specific component to improve the understanding of 
modelling. Especially, it is important to understand the acceleration and scaling models. 
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4 Uncertainty Quantification in Physical Testing 

4.1 Hybrid Testing for Reliability Verification 

Uncertainties affect all stages of a reliability verification process. There are uncertainties in the 
reliability requirement specification, in how well it represents the true environmental load in 
service during the required life span. Even if the service life could be described perfectly in 
terms of environmental loading, the reliability test requirement must have reduced complexity 
and accelerated loading exposure. This test requirement is also strongly connected to the test 
rig or simulation model and how accurate it applies the load. For instance, it can be difficult to 
achieve a good match in boundary conditions, when testing is performed on a sub-system. 
Finally, physical testing uses measurement technology that adds to the total uncertainty.  

This section is primarily about guidance in MSA and the measurement uncertainty principles 
detailed in “ISO/IEC GUIDE 98-3:2008 Uncertainty of measurement -- Part 3: Guide to the 
expression of uncertainty in measurement (GUM:1995)”, (ISO/TMBG, 2008). However, all 
uncertainties can be delt with in a similar way, i.e., by analysing each part, quantifying 
uncertainty, and then combining the uncertainties of parts. 

4.2 Overview of Measurement Uncertainty 

As introduced in Section 2.1, a measurement result 𝑦 is not complete unless it is accompanied 
by an ‘expanded uncertainty’ with the purpose of quantifying an interval, centred around the 
measured value, that is likely to contain the true value of the measurand. One can then state, 

with a chosen degree of confidence, that the true value lies within the interval [𝑦 − 𝑈, 𝑦 + 𝑈].  

The expanded uncertainty is based on the ‘standard uncertainty’ 𝑢 which corresponds to the 
standard deviation of a random variable. The choice of ‘coverage factor’ k determines the width 
of the interval, as 𝑈 = 𝑘𝑢. Often a 95% level of confidence is used, which corresponds to a 

coverage factor of 𝑘 = 2, so that 𝑈 = 2𝑢. 

Experimental and mathematical analysis of a measurement chain or process to determine how 
much the variation within the measurement process contributes to overall process variability is 
called MSA. The overall process variability is causing the measurement process to show 
different measurement results each time the measurement is reproduced. The source of 
variation can be the measuring equipment, the operator, the environment, etc. and each 
variation will transfer through the measurement process and contribute to the overall 
measurement variability. Reduction of measurement variation is achieved through control of 
variation within the process, e.g., through calibration of equipment, using the same operator, 
keeping environmental factors constant, etc. The purpose of MSA is to qualify a measurement 
system by quantifying its variation, which is distorting accuracy (systematic error), precision 
(random variation) and stability (variation over time). The difference between accuracy and 
precision is illustrated in Figure 10. 
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Figure 10: Two measurement outcomes with different type of variation from the true position 
in the centre. The left picture illustrates good accuracy but poor precision. Vice versa to the 
right. 

 

GUM provides general rules for evaluating and expressing uncertainty in measurement. It 
presents eight steps to be followed, that are quoted and commented here: 

1. “Express mathematically the relationship between the measurand 𝑌 and the input 

quantities 𝑋𝑖 on which 𝑌 depends: 𝑌 = 𝑓(𝑋1, 𝑋2, . . . , 𝑋𝑛). The function 𝑓 should contain 
every quantity, including all corrections and correction factors, that can contribute a 
significant component of uncertainty to the result of the measurement.” 

 

This first step is the most important step, because the measurement uncertainty 
quantification will be wrong if only a single source of uncertainty is forgotten. It is also a 
difficult step. Thorough experience about the measurement process is needed. 

 

An alternative way to express the relationship is 𝑌 = 𝑦 + 𝑓(𝑒1, 𝑒2, . . . , 𝑒𝑛). In this case the 
mean values are subtracted from each input quantity and represented by the mean of the 
measurand, 𝑦 = 𝑓(𝑥1, 𝑥2. . . , 𝑥𝑛). The resulting measurement variation is then expressed 
as a function of zero-mean input errors 𝑒𝑖. 

 

2. “Determine 𝑥𝑖, the estimated value of input quantity 𝑋𝑖, either on the basis of the statistical 
analysis of series of observations or by other means.” 

 

The input quantities are grouped into two categories, depending on how the variation is 
quantified: 

 

Type A – input quantities that can be evaluated by statistical analysis of experiments. 

Type B – input quantities which variations are estimated by judgement or experience. 

 

3. “Evaluate the standard uncertainty 𝑢(𝑥𝑖) of each input estimate 𝑥𝑖.” 

 

This is explained further in Section 4.4. 
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4. “Evaluate the covariances associated with any input estimates that are correlated.” 

 

Often input quantities can be treated as independent random variables, which simplifies 
the analysis of uncertainty. However, if some of the 𝑋𝑖 are significantly correlated, the 
correlations must be considered. Covariance terms (or terms with correlation coefficients) 
are added to the equation of combined standard uncertainty 𝑢𝑐(𝑦) in step 6 (see Section 
4.4). 

 

5. “Calculate the result of the measurement, that is, the estimate 𝑦 of the measurand 𝑌, from 

the functional relationship 𝑓 using for the input quantities 𝑋𝑖 the estimates 𝑥𝑖 obtained in 
step 2.” 

 

6. “Determine the combined standard uncertainty 𝑢𝑐(𝑦) of the measurement result 𝑦 from the 
standard uncertainties and covariances associated with the input estimates.” 

 

This is explained further in Section 4.4. 

 

7. “If it is necessary to give an expanded uncertainty 𝑈, whose purpose is to provide an 

interval 𝑦 − 𝑈 to 𝑦 + 𝑈 that may be expected to encompass a large fraction of the 
distribution of values that could reasonably be attributed to the measurand 𝑌, multiply the 

combined standard uncertainty 𝑢𝑐(𝑦) by a coverage factor 𝑘, typically in the range 2 to 3, 
to obtain 𝑈 = 𝑘𝑢𝑐(𝑦). Select 𝑘 on the basis of the level of confidence required of the 
interval.” 

 

8. “Report the result of the measurement 𝑦 together with its combined standard uncertainty 

𝑢𝑐(𝑦) or expanded uncertainty 𝑈.” 

 

4.3 Different Types of Measurement Uncertainty 

The result of a measurement usually depends on multiple sources. Every time a measurement 
is conducted, the result might deviate from previous measurements due to variability in 
different sources. The uncertainty of the sources will contribute to the overall uncertainty of the 
measurement. The sources of uncertainties can be subdivided into following categories: 

• Item being measured: The item that is being measured can itself contribute to the 
uncertainty. The item could, for example, be unstable in nature. Imagine measuring the 
dimensions of an ice cube in a warm room or measuring the windspeed. The item could 
also be contaminated, which may affect the result of the measurement, for example, dirt 
particles that are adding extra weight to the item. The variation between different item 
samples may also contribute to uncertainty. 

• Measuring instrument: The instrument that is used for measuring often holds multiple 
sources of uncertainties, e.g., error in calibration, bias, drift, electrical noise, aging, 
rounding errors, poor readability, just to name a few. It is also common that the measuring 
instrument affects the item being measured. For example, when measuring the 
temperature of an item, the thermometer may itself affect the measured temperature since 
the thermometer tends towards thermal equilibrium with the item. Another example is when 
measuring acceleration using an accelerometer, where the extra mass of the 
accelerometer is changing the dynamic behaviour of the item. 
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• Operator: The skill and judgement of the person(s) performing the measurement can affect 
the outcome of the result. How the operator is treating the measuring instrument and test 
item, and how well the operator is executing the measurement process, are also important 
aspects. 

• Environment: The environment, such as temperature, air pressure, and humidity, can 
affect the measuring instrument as well as the item being measured. The environment may 
even have an impact on the operator. 

• Measurement process: How and when the measurement is carried out is also an 
important aspect of uncertainty. The rigging and positioning of the item being measured 
and the measuring instrument, may also affect the outcome of the result. If the 
measurement process is complex to execute, the risk of human errors will most likely 
increase. 

 
An overview of the subdivision of sources that contribute to measurement uncertainty is 
presented in Figure 11. 

Note that this section presents measurement uncertainty categories in a general setting. It is 
different from the set of uncertainty categories that was adopted to the hybrid testing for wave 
energy applications, as suggested in Section 3.2.1. 

The uncertainty of a measurement contains the combined uncertainty of multiple sources. The 
relation between measured quantity 𝑌 and sources 𝑋𝑖 is given by a function 𝑌 = 𝑓(𝑋1, … , 𝑋𝑁), 
where arbitrary values of the sources 𝑋𝑖 is mapped to the measurement 𝑌. An illustration of 
this is presented in Figure 12 and Figure 13. The “true value” of a measurement is acquired if 
all sources is equal to their nominal values. Any deviation from the nominal value contribute to 
a measurement error. However, in some situations the measurement errors of different 
sources might cancel each other out. 

 

 

Figure 11: Different types of measurement uncertainties. The arrows denote the mutual 
influence between them. 
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Figure 12: Different sources of uncertainties that decide the outcome of a measurement. The 
green value of each source denotes the nominal value. 

 

 

Figure 13: The nominal value of all sources is mapping to the true value of the measurement. 
The green value of each source denotes the nominal value. 
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4.4 Methods for Assessing Uncertainty 

4.4.1 Evaluation of Standard Uncertainty Type A 

Input quantity uncertainties of Type A are preferred as they can be evaluated using 
experiments and statistical analysis. The variation of each input quantity is studied from a 
population that represents the variation that is to be quantified. Every type of uncertainty, as 
presented in the previous sub-section, is not always included in the analysis. 

The standard uncertainty, for uncertainty 𝑖, is estimated using the well-known equation for 
calculation of sample standard deviation, from a random trial: 

𝑢𝑖 = √
1

𝑛 − 1
∑(𝑥𝑖,𝑗 − �̅�𝑖)

2
𝑛

𝑗=1

 (19) 

where 𝑛 is the sample size and 𝑥𝑖 is the arithmetic mean estimate: 

�̅�𝑖 =
1

𝑛
∑𝑥𝑖,𝑗

𝑛

𝑗=1

 (20) 

from the 𝑛 observations 𝑥𝑖,𝑗 of the 𝑖:th input quantity. The number of degrees of freedom 

associated with the uncertainty estimate is 𝜈𝑖 = 𝑛 − 1. 

Analysis of a random variation of an input quantity will benefit from a large sample size, as the 
uncertainty will reduce gradually with increasing 𝑛. 

When the measurement system has poor accuracy, there is a systematic error (or bias) that 
will not reduce through averaging. Calibration experiments can be performed to quantify 
systematic errors, e.g., for a measurement instrument. Often an adjustment of the 
measurement output is done to reduce the error (and the uncertainty). 

4.4.2 Evaluation of Standard Uncertainty Type B 

It is not always possible or practical to perform the experiments needed to evaluate type A 
uncertainties. Even when it is possible, it may not be worth the effort compared to making 
conservative guesses when you can afford higher uncertainty (over-estimation). 

In some cases, the uncertainty evaluation through judgement can be easier to motivate: 

• when the uncertainty is known from experience 

• when the uncertainty is given in equipment specification, calibration document, etc. 

• when the effect from an error can be derived exactly, e.g., round-off error. 

 
Uncertainties given in documents are often easy to recalculate to a standard uncertainty, if not 
given directly.  

When an interval is given together with a probability of the input quantity 𝑋𝑖 lying inside it, the 
standard uncertainty can often be derived through the standard deviation of a normal 
distribution with the corresponding confidence interval. 

Type B uncertainties can also be expressed as estimated bounds outside which an input 
quantity is very unlikely to appear. In some cases with a bound [𝑎, 𝑏] one will consider any 
value inside the limits as equally probable. An assumption about uniform distribution is made 
with its standard deviation adopted as the standard uncertainty: 
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𝑢𝑖 =√
(𝑏 − 𝑎)2

12
 (21) 

In other cases with a bound [𝑎, 𝑏] one could consider outcomes close to the bounds less likely 
than outcomes close to the mid-value (𝑏 + 𝑎)/2. An assumption about a triangular distribution 
can then be made, symmetric or not. The standard uncertainty for the symmetric triangular 
distribution is: 

𝑢𝑖 =√
(𝑏 − 𝑎)2

24
 (22) 

4.4.3 Evaluation of Sensitivity Coefficients 

The measurand is a function of input quantities 𝑌 = 𝑓(𝑋1, 𝑋2, . . . , 𝑋𝑁) and the uncertainty of 
each input quantity is now determined, as described above. Different input quantities can have 
similar level of standard uncertainty but still contribute to different amount of uncertainty in the 
measurement result 𝑦. How much uncertainty that is transferred through to the measurand, 
from each input quantity, is controlled by the function 𝑓(𝑋1, 𝑋2, . . . , 𝑋𝑁). The combined standard 

uncertainty of the measurement result can be expressed with sensitivity coefficients 𝑐𝑖 as: 

𝑢𝑦
2 =∑𝑐𝑖

2𝑢𝑖
2

𝑛

𝑖=1

 (23) 

at least when there is no correlation between the input quantities. Each sensitivity coefficient 
is equal to the partial derivative: 

𝑐𝑖 =
𝜕𝑓

𝜕𝑥𝑖
 (24) 

The function 𝑦 = 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑁) is sometimes known and then the coefficients can be derived 
directly by derivation. 

In many cases the function is not known, and sensitivity coefficients can then be determined 
from experiments, varying one input quantity by a small amount while keeping other inputs 
fixed. The ratio between the resulting difference in measurement output and the difference in 
input quantity is the sensitivity coefficient, for that input quantity. The experiment is then 
repeated with controlled variation of other input quantities, one by one. This difference 
propagation is evaluated keeping all but one input quantities constant, at the time, at a nominal 
value that should be close to each mean value. 

If the variation applied for input quantity 𝑥𝑖 is exactly one standard uncertainty up and down, 

from the nominal value �̃�𝑖,  �̃�𝑖 + 𝑢𝑖 and �̃�𝑖 − 𝑢𝑖, then the expression for calculating the 𝑖:th 
sensitivity coefficient is: 

𝑐𝑖 =
𝑓(�̃�1, … , �̃�𝑖 + 𝑢𝑖, … , �̃�𝑛) − 𝑓(�̃�1, … , �̃�𝑖 − 𝑢𝑖, … , �̃�𝑛)

2𝑢𝑖
 (25) 

When correlation between two or more input quantities does exist, the expression for the 
combined standard uncertainty of the measurement result becomes more complex: 
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𝑢𝑦
2 =∑𝑐𝑖

2𝑢𝑖
2

𝑛

𝑖=1

+ 2∑∑𝑐𝑖

𝑖−1

𝑗=1

𝑐𝑗𝑢𝑖𝑢𝑗𝑟(𝑥𝑖, 𝑥𝑗)

𝑛

𝑖=2

 (26) 

where the correlation coefficient 𝑟(𝑥𝑖 , 𝑥𝑗) is the quotient between the square root of the sample 

covariance estimate, between 𝑥𝑖 and 𝑥𝑗, and the product of individual standard deviation 

estimates:  

𝑟(𝑥𝑖, 𝑥𝑗) =
𝑠(𝑥𝑖, 𝑥𝑗)

𝑠(𝑥𝑖)𝑠(𝑥𝑗)
 (27) 
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5 Uncertainty Quantification in Numerical 
Simulations 

Section 5 aims to address UQ in numerical modelling. Similar to the discussion presented in 
Section 4 for physical testing, UQ in numerical simulation aims to introduce a stochastic 
approach to the design process, whereby the inherent variability in the estimates is considered, 
and where the likelihood of failure can be estimated by assessing the load and resistance 
profiles in a probabilistic sense. In Wave Energy Converter (WEC) design, such probabilistic 
approach may prove vital in avoiding under- and / or over-design of a range of critical sub-
systems and components, which is more likely to occur should a deterministic design approach 
be followed, i.e., if an arbitrary factor is assumed to address both the variability and safety 
margin between the characteristic load and resistance. 

The mainstream application of numerical models in WEC design, in particular at the technology 
readiness levels targeted by the VALID project, emphasises the importance that practical 
guidance related to the adoption of UQ best practices may bring to the conceptualisation of 
reliable WEC designs. It is beyond the scope of this section to provide an exhaustive review 
of all the applications of UQ in numerical simulations – thus a focus on aspects deemed 
relevant to WEC design is kept throughout the section. The interested reader is directed to e.g. 
(Ghanem et al., 2017; Soize, 2017) for overarching references that address UQ in a wider 
engineering context. The further interested reader is additionally invited to assess the 
implications of V&V procedures in numerical simulations, which are not addressed in detail in 
this section; however, the authors acknowledge that V&V procedures can have a critical role 
in mitigating uncertainties in numerical simulations, by ensuring that the dominant equations 
are solved in a correct manner (verification) and that the correct equations are solved 
(validation). Specific links between UQ and V&V are addressed in e.g. relevant publications by 
NAFEMS – see e.g. (Smith, 2021); a connection with simulation quality management 
guidelines can also be made, especially with regard to specific topics such as code verification 
– see e.g. (ASME, 2023). 

The main objective of this section is to familiarise the reader with the principles of UQ in 
numerical simulation, in a format directly applicable to WEC design considerations. To address 
this objective, this section is divided in four sub-sections. The overall methodology and multiple 
stages associated with UQ in numerical modelling are introduced in Section 5.1. At a high-
level, these include input, results and (output) analysis stages. Each of such stages is then 
sequentially addressed in Section 5.2 to 5.4, respectively. 

5.1 Stages of UQ in Numerical Simulations 

The definition and analysis of uncertainty in numerical simulations parallel the presentation of 
these topics for physical measurements in many respects. The true value of physical quantities 
is not accessible neither to measurements nor to simulations. What is practically feasible is to 
estimate a range where the true value is expected to fall with a certain likelihood, and that is 
what UQ is all about. The factors that cause the outcomes of numerical simulations to differ 
from reality are partly the same that also affect physical measurements. However, there are 
also elements that are specific to the uncertainty in numerical simulations.    

For example, numerical simulations performed to support engineering design are largely 
deterministic; that is, they provide exactly the same output for given inputs. This is in contrast 
with physical experimentation, where the repetition of a measurement under nominally 
identical conditions might lead to different results. Randomness and variability in inputs have 
to be deliberately added to the computational models, and thus it becomes a part of the 
modelling process itself.  

Statistical analysis of repeated measurements is a straightforward way to quantity the overall 
uncertainty of the measured variables. Such a direct approach to UQ on the output of 
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computational models is not possible. The closest example of purely statistical approach to 
UQ for numerical simulations is the Monte Carlo method (and its many variants) which, in 
essence, consists in the estimation of model output statistics based on a sample computed 
from an ensemble of randomly drawn input samples. The results of this statistical approach 
depend on the characterization of the variability of inputs, which requires modelling choices 
(typically, in terms of probability distributions) that contribute to overall uncertainty in a way that 
might be hard to quantify.  

Uncertainty in numerical simulations can be characterized in several forms, which might be 
tailored to highlight specific aspects. Here, the categorization proposed in (Oberkampf and 
Roy, 2010) is followed, that breaks down the total uncertainty in model predictions into three 
contributions: 

1. Model uncertainty.  

2. Input uncertainty. 

3. Numerical error.        

 
Model uncertainty (sometimes denoted as “model form uncertainty”) stems from the 
formulation of the model and the assumptions embedded in it. For example, the choice of a 
certain set of equations might leave out some physical phenomena that potentially affect the 
behaviour of the actual system. This source of uncertainty introduces a bias in simulation 
results that, in most applications, is hard to quantify. Validation data from the comparison of 
model results with experiments or alternative model formulations might provide indications on 
how to quantify this uncertainty. 

Variability and imprecise knowledge in inputs (sometimes denoted as “parametric uncertainty”) 
is by far the source of uncertainty that is most commonly considered in the literature. More 
details on the quantification of this source are presented in Section 5.2.       

Numerical errors arise from the algorithmic implementation and numerical solution procedures. 
Discretization errors due to the use of a finite time step and spatial resolution fall within this 
category. A discussion of this source of uncertainty in the context of models used for WEC 
design is presented in Section 5.4.1.   

At a high-level, the characteristic stages of UQ in numerical simulations match those of UQ in 
physical testing – noting that suitable adaptation likely apply per stage, e.g., a material 
(numerical) model may be replaced in physical testing by a material specimen. A schematic of 
such stages is illustrated in Figure 14, with these being organised in three key steps: 

1. Inputs: characterisation of input uncertainty, i.e., environmental conditions, loads model 
(and related assumptions) and material / resistance model (and related assumptions). 

2. Results: propagation of the input uncertainty through the computational model(s), leading 
to the numerical results. 

3. Analysis: assessment(s) of the uncertainty associated with the model outputs.  
 

The overall uncertainty of numerical simulations 𝛿𝑠𝑖𝑚 resulting from step 3 above may be 
expressed as the sum of three components to better understand the relative contribution of 
different categories of elements that build up the simulations (Oberkampf and Roy, 2010): 

𝛿𝑠𝑖𝑚 = 𝛿𝑖𝑛𝑝𝑢𝑡 + 𝛿𝑛𝑢𝑚 + 𝛿𝑚𝑜𝑑𝑒𝑙 (28) 

where 𝛿𝑖𝑛𝑝𝑢𝑡 represents the contributions from input signals, parameters, and boundary 

conditions, 𝛿𝑛𝑢𝑚 is the sum of all the numerical errors associated to the approximate solution 

of model equations, and 𝛿𝑚𝑜𝑑𝑒𝑙 is the uncertainty generated by assumptions and simplifications 
in model form.   
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Figure 14: Main stages of UQ process in numerical simulations. 

 

In the context of the VALID project, a direct analogy between each stage of UQ in numerical 
simulations and the methodology for hybrid life testing developed in VALID can be established. 
As also illustrated in Figure 14, the Inputs, Results and Analysis stages can be directly 
associated with the Pre-Processing, Processing and Post-Processing pillars of the VALID 
methodology, as originally identified in VALID D1.2, (Ruiz-Minguela et al., 2021). Each of the 
UQ stages is addressed sequentially in Sections 5.2 to 5.4, where details about stage-specific 
options and steps associated with UQ are documented.  

An aspect of particular relevance in the context of hybrid life testing is the complexity and 
computational effort associated with the numerical model(s). An exhaustive review of generic 
guidelines associated with UQ in complex, computationally expensive models is outside the 
scope of this report – the interested reader is directed to e.g.: the deliverables of the European 
Metrology Research Programme (EMRP) Novel mathematical & statistical approaches to 
uncertainty evaluation project – see e.g. (Allard et al., 2015)-: the provisions listed in the 
National Research Council (NRC) Assessing the Reliability of Complex Models: Mathematical 
and Statistical Foundations of Verification, Validation, and Uncertainty Quantification book 
(Council, 2012). 

Some cross-cutting considerations that are, in the opinion of the authors of this report, relevant, 
include: 

• Uncertainty related to the model inputs (see Section 5.2) will affect the uncertainty 
associated with the model outputs (Section 5.4). By propagating the model input 
uncertainties through the model, an UQ exercise can be completed. Several methods may 
be followed to implement uncertainty propagating procedures (see Section 5.3).   

• It is important to distinguish error from uncertainty. While in the former there is certainty 
regarding a flaw in the modelling process, in the latter such certainty does not apply.  

• Complex, computationally expensive models may not allow a Monte Carlo sampling 
approach for UQ (see also Section 5.3). In such scenarios, an understanding of a feasible 
upper limit to the number of evaluations is beneficial (if not required) when initiating the UQ 
process.  

• In wave energy applications, and as reviewed in VALID D1.2, (Ruiz-Minguela et al., 2021), 
fluid-structure interaction solvers are likely to be used to estimate the solution(s) of the 
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wave-structure interaction problem(s). While noting that a range of formulations may be 
used in such solvers, specific references have addressed the main sources of uncertainty 
affecting Computational Fluid Dynamics (CFD) solvers - see e.g. the Institute for Computer 
Applications in Science and Engineering report on uncertainty analysis for fluid mechanics 
with applications (Walters and Huyse, 2002). A summary of main sources of uncertainty 
and error in CFD is presented in Table 6, following (Oberkampf et al., 2001). At a high-
level, the selection of core formulation (and of the related assumptions) is likely to have a 
large contribution to the overall uncertainty; in ‘pure’ CFD formulation such as Reynolds-
Averaged Navier Stokes (RANSE) solvers it is accepted that discretisation error, geometric 
uncertainty and turbulence model uncertainty can have the most significant contributions 
to the overall uncertainty (Walters and Huyse, 2002).  

 
Table 6: Sources of uncertainty and error in fluid-structure interaction solvers – adapted from 
(Oberkampf et al., 2001). 

Source Examples 

Core model formulation Boundary element method, RANSE, 
smoothed particle hydrodynamics, … 

Core model assumptions Inviscid / viscid flow, incompressible / 
compressible flow, … 

Auxiliary model assumptions Turbulence model, thermodynamic 
properties, … 

Boundary conditions Free-surface, wall conditions, far-field 
conditions, … 

Discretization and solver settings Geometry representation, iterative 
convergence, truncations error, … 

Round-off error Numerical precision, … 

Programming / user error - 

 

As a concluding remark, and focusing on the underlying characteristics of hybrid life testing, 
recommended steps to quantify the uncertainty in the virtual (numerical) part of the test 
procedure include: 

1. Mapping of the virtual and physical components in the test procedure, and of the associated 
interfaces, i.e., what is simulated, what is physical and how the two environments interact 
with each other. If several models are connected into a system or sub-system, the 
identification of the ‘building blocks’ that comprise each model and of the input / output 
interfaces between them is also critical – see also e.g. VALID D1.2, (Ruiz-Minguela et al., 
2021). 

2. For each numerical model / virtual component, the uncertainty analysis may be performed 
according to the general process defined in Figure 14, from the characterisation of the input 
uncertainty, its propagation across the solver stage, and the analysis of the model outputs. 

5.2 Model Inputs 

 At a high-level, it is convenient to categorise the different sources of uncertainty in aleatory 
(i.e., intrinsic randomness) and epistemic (i.e., lack of knowledge). The practical consequence 
of this categorisation is the identification of which uncertainties are reducible by acquiring more 
data and / or by refining the models (i.e., epistemic) and which ones are irreducible (i.e. 
aleatory). Furthermore, the nature of available data (or lack thereof) as well as allocated 
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computational resources largely determine which methods are more appropriate to quantify 
the uncertainty. 

A generic categorisation of uncertainty sources in input factors can take the following form:  

i. Numerical parameters describing material and physical properties, geometric 
dimensions, loads models, etc. 

ii. Model structure, e.g., which physical phenomena are taken/not taken into account, 
boundary conditions, initial conditions, etc.  

iii. Numerical errors, e.g., discretisation, truncation errors, solver settings, etc. 
 

In relation to items i. and ii., a reduced number of references connected to such uncertainty 
sources has focused on WEC design aspects. Examples of such references include e.g. 
(Ambühl, 2015), where an assessment of WEC reliability is considered using a probabilistic 
approach. In (Ambühl, 2015), and in addition to an overview of the differences between 
deterministic and probabilistic design principles, model uncertainties related to input factors 
are discussed, with environmental conditions, load and stress calculation models being 
identified as the categories of most interest. The different input categories suggested in 
(Ambühl, 2015) were used as a starting point in Table 7, which adapts and expands the 
overview of modelling options in a Highly Accelerated Life Test (HALT) context.  

 

Table 7: Sources of modelling uncertainty at input level. 

Input Category Typical Modelling Options  

(HALT context) 

Notes 

Characterisation 
of the 
environmental 
conditions 

Contour discretisation. 

Full environmental characterisation 
(response based). 

Type of data source also affects 
underlying uncertainty (e.g., if field 
data is used, quality checking is 
required – but validation of the 
underlying numerical model does 
not apply). 

Load calculation 
model(s) 

Local / uncoupled or global / 
coupled model (e.g., does the 
model aim to mimic the WEC 
response, or just provide actuation 
loads to the test rig?). 

Formulation (potential flow, 
Morison, RANSE, etc.). 

Post-processing method to derive 
e.g., extreme loads. 

Accelerated testing models e.g., 
based on increased load amplitude, 
load frequency or displacement. 

Model structural / numerical errors 
affect each option differently. 

V&V activities to be considered a 
precursor to any inclusion in a 
HALT environment – see e.g. 
(C/S2ESC, 2018).  

General assumption is that sub-
system / component under test will 
replace part (or all) the simulation, 
with results allowing further, more 
detailed model development. 
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Input Category Typical Modelling Options  

(HALT context) 

Notes 

Resistance and 
wear model(s) 

Process-structure-property models 
to e.g. understand the cause-effect 
relationship between material 
structure and properties – see e.g. 
(Wang and McDowell, 2020). 

Structural / materials / stress 
models (e.g., finite element 
analysis) 

Wear / damage models, e.g. 
Palmgren-Miner rule and the 
rainflow cycle counting (Downing 
and Socie, 1982), fatigue stiffness 
degradation models (Sanchez-Sardi 
et al., 2016), spectral fatigue 
methods (Ragan and Manuel, 
2007). 

Testing may assist numerical 
modelling activities by e.g.  
establishing ultimate resistance / 
serviceability properties of 
structural components, obtaining 
specific material properties, 
calibrating and / or validating 
numerical models etc. – see e.g. 
Annex D of (CEN/TC 250, 2002).  

 

As in (Ambühl, 2015), it can be noted that the model uncertainties associated with resistance 
and wear models are predominantly of a generic nature, i.e. they are not specific to WEC 
design. In contrast, model uncertainties associated with either the characterisation of the 
environmental conditions and load calculation models are likely to have elements where their 
relative importance in the overall uncertainty may differ between WEC design and other 
offshore engineering applications. Recent examples of relevant assessments include e.g.: 

• The influence of a range of methods to estimate environmental contours was documented 
in (Haselsteiner et al., 2021), which highlights the potential impact of the method selection 
in long-term estimates of key environmental parameters, which may in turn influence 
related extreme load estimates. Furthermore, a subsequent application of different to load 
estimates in a fixed offshore wind turbine support structure was presented in (Haselsteiner 
et al., 2022), where contour and response-based methods yielded significantly different 
load estimates (up to 28% difference reported).  

• In (Ambühl, 2015) the uncertainty associated with load characterisation was identified as 
having the highest (relative) importance in the overall model input uncertainty. A similar 
finding was reported in (Atcheson et al., 2019), where the post-processing methodology 
applied when deriving the Ultimate Limit State (ULS) load was the variable that mostly 
contributed to the overall uncertainty in the ULS estimate. Examples where different post-
processing methods were used to derive ULS load estimates include e.g. (Coe et al., 2018; 
Shahroozi et al., 2022).      

• A sensitivity analysis focused on the uncertainty associated with extreme load estimates 
associated with a point absorbed WEC was performed in (Eskilsson et al., 2022). A 
surrogate model based on the generalised polynomial chaos approach was created to 
minimise the computational effort. The resulting sensitivities were ranked using the Sobol 
index method. The relative importance of different input sources to the target metrics 
differed between the regular and irregular wave cases studies. Other recent studies were 
also performed targeting additional outputs variables, such as mooring line dynamics – see 
e.g. (Moura Paredes et al., 2020).  
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For other applications, including offshore wind, examples of assessments related to 
uncertainty in environmental characterisation and / or load models include e.g.: 

• A Sobol global-sensitivity approach was adopted in (Nispel et al., 2021) to identify the most 
and least important parameters (including environmental parameters) that contribute to the 
fatigue life of the support structure of an offshore bottom-fixed wind turbine. The most 
influential parameters were found to be the mean wind speed and the air density, for which 
the authors recommended accurate data collection and statistical analysis to reduce 
uncertainty propagation in fatigue life assessments. 

• The uncertainty in the Annual Energy Production (AEP) for a range of offshore wind farms 
was assessed in (Richter et al., 2022) based on the uncertainty propagation models related 
to mean wind speed, wake effects, thrust curve, surface roughness, power curve and plant 
performance. Overall, it was found that uncertainties in the mean wind speed have the 
greatest influence on uncertainty in AEP estimates; however, it was noted that farm layout, 
turbine types and farm locations may make some wind farms more sensitive to specific 
parameters than others. 

 
Finally, generic examples of studies that address the uncertainties related to accelerated 
testing, resistance and wear models include: 

• If conducted numerically, the future adoption of accelerated testing principles based on 
e.g., increased load amplitude and / or frequency may require assessing the validity of the 
underlying assumptions of the considered load model(s). For example, the use of a 
hydrodynamic model based on e.g., linear wave theory implies that the resulting dynamics 
are small when compared to the dominant wavelength, and that wave-induced loads are 
proportional to the wave amplitude. If an increased displacement amplitude is simulated to 
e.g. virtually accelerate the wear failure mechanism, this may violate the fundamental 
principles of linear wave theory – see e.g. (Faltinsen, 1990).  

• In (Hu and Mahadevan, 2017) UQ modelling techniques are applied to predict material 
properties during additive manufacturing, based on a process-structure-property approach 
– see e.g. (Wang and McDowell, 2020). In particular, the study focuses on estimating the 
uncertainty of the ultimate tensile strength of a structure obtained from laser sintering of 
nanoparticles. Uncertainty sources are identified as both aleatory (variability of particle 
radii, sintering temperature, and the gap between the particles due to packing of the 
powder bed) and epistemic (the simulation model). Uncertainty propagation is based on a 
surrogate model (see also Section 5.3.3), which was used to derive 1,000 realizations of 
the stress-strain curve of the material to assess the uncertainty in the ultimate tensile 
strength of the material. Such study provides an example of UQ for the mechanical 
properties of a specific material, in the context of a process-structure-property framework 
aiming to investigate the uncertainties in the modelling of a manufacturing process, which 
may relate to the ‘resistance’ models alluded to in Table 7. 

• The advantages and disadvantages of the Rainflow cycle counting algorithm (used in 
conjunction with the Palmgren-Miner rule) and a fatigue stiffness degradation model are 
discussed in (Sanchez-Sardi et al., 2016), with reference to the fatigue life assessment of 
a wind turbine blade. In particular, fatigue stiffness models associate the fatigue damage 
of a component to an overall degradation of its stiffness properties – as such models initially 
were developed for composite materials. The stiffness degradation phenomenon is 
generally modeled as a function of material properties (including the ultimate compression 
static strength), and the stress acting on the component. Although the study in (Sanchez-
Sardi et al., 2016) does not provide quantitative, comparable results, it does stress that 
uncertainty may be associated following either model – with such uncertainty mostly related 
to input parameter estimation via physical modeling. 
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• In (Ragan and Manuel, 2007) Dirlik’s spectral method was compared to a classical time-
domain method (based on the Rainflow cycle counting algorithm) for the estimation of the 
fatigue loads acting on a wind turbine. Overall, the study concluded that the spectral 
method is more conservative than the time-domain method. Furthermore, it was noted that 
the spectral method was able to replicate the results of the time-domain methods more 
accurately for some type of loads e.g., tower bending moments than for others e.g. blade 
edgewise bending moment. The study suggests that Dirlik’s spectral method performs 
poorly in estimating the fatigue damage when “large [loading] periodic components” occur, 
which is the case for blade loads due to e.g., centrifugal loads and gravity loads. The study 
included an analysis on the different types of inputs on which the two methods rely, and 
highlighted how reducing uncertainty in input data to the fatigue models is key in deriving 
accurate estimates of damage. 

 

The quantitative evaluation of uncertainty in input factors can be based in the assessment of 
intervals (minimum and maximum values), statistical moments (typically measurements of 
central tendency and dispersion) and probabilistic distributions. Additionally, a range of 
methods for uncertainty propagation, particularly those under the denomination of “Sampling 
methods” in Section 5.3, explore the design space by selecting input values according to 
certain rules, thus resulting in structured patterns which resembles those derived from the 
techniques of Design of Experiments (DoE). There are some differences between physical and 
computational DoE, with the latter being underpinned in the principle of adequate coverage of 
the design space while minimising the amount of (possibly expensive) model evaluations.   

To conclude, a more widely applicable set of references is dedicated to item iii (numerical 
errors). In general, numerical errors might be perceived as conceptually different from 
uncertainty, as they do not originate from natural variability or lack of knowledge. They can be 
intuitively assimilated to a bias, or systematic error as they entail the deviation of the computed 
solution from its true value (which, however, cannot always be proven to exist). Additionally, 
discretization errors and solver settings play an important role to determine the overall range 
of model output, therefore they should be at least noted at the input stage and estimated a 
priori whenever possible. However, in most cases, proper quantification of numerical solution 
errors can be performed only a posteriori, that is at the output stage (see Section 5.4).   

5.3 Uncertainty Propagation 

The propagation of uncertainty through numerical models may be addressed following several 
methods. In general, uncertainty propagation may be described by a (non)-linear function, 
𝑔(×), which transfers one input variable, 휁, to the quantity of interest, 휂, as: 

휂 = 𝑔(휁) (29) 

It is noted that the function 𝑔(×) may link more than one input variable to more than one 
quantity of interest; however, for simplicity of notation and without loss of generality, only one 
input variable and one quantity of interest are considered, to formulate illustrative equations in 
this section.  

A non-exhaustive list of methods to assess uncertainty propagation through numerical models 
is outlined in Table 8. A brief description of each method is then proposed in the following 
subsections. 
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Table 8: Non-exhaustive list of methods to assess uncertainty propagation through numerical 
models. 

Method Category Method Type Sample 
Reference(s) 

Analytical methods Taylor expansion (Schenkendorf, 
2014)  

Sampling methods Random sampling (Monte Carlo) (Allard et al., 
2015) (Nguyen et 
al., 2019)  

Importance sampling (Allard et al., 
2015) (Mckay et 
al., 2000) 

Stratified sampling (Allard et al., 
2015) (Mckay et 
al., 2000)  

Surrogate methods Nearest-Neighbour  (Allard et al., 
2015) 

Polynomial Chaos Expansion  (Allard et al., 
2015) (Nguyen et 
al., 2019) 
(Wiener, 1938) 

Inference methods Bayesian models (Elster et al., 
2015) 

Dampster-Shafer theory (James C. 
Hoffman and 
Robin R. Murphy, 
1993) 

 

5.3.1 Analytical Methods 

Analytical methods aim to formulate approximate analytical expressions of the function 𝑔(×) 
via the use of e.g. Taylor expansion (Schenkendorf, 2014). For example, the first-order Taylor 

approximation of Eq. (29), calculated at 휁 = 휁,̅ may be expressed as: 

휂 = 𝑔(휁) ≈ 𝑔(휁)̅ +
𝜕𝑔

𝜕휁
|
𝜁=�̅�

(휁 − 휁)̅ (30) 

Such an approximation would easily support the assessment of statistical moments of the 
quantity of interest, e.g., mean, standard deviation etc. However, a first-order Taylor series 
expansion is able to accurately represent 𝑔(×) only if the latter is close to being linear in the 
region of interest. While higher-order terms in the expansion may in principle gradually improve 
the modelling accuracy, higher than second-order approximations are seldom used practically 
(Schenkendorf, 2014). In addition, the adoption of a Taylor expansion scheme assumes that 
the mapping function 𝑔(×) is differentiable, which may not always be the case e.g. if the 
mapping function is a maximum function (Schenkendorf, 2014). Finally, and with particular 
significance for practical applications, the use of analytical methods is prevented when the 
mapping function is unknown, or it is not expressible in closed form.  
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5.3.2 Sampling Methods 

Sampling methods consist in generating several samples of the input variable, 휁 and assess 

the output, 휂, for each input sample to eventually estimate statistical properties of the quantity 
of interest (Allard et al., 2015). When the input variables are generated according to a random 
uniform distribution, the sampling method is also known as Monte Carlo method. In general, 
the Monte Carlo method requires a large number of simulations to be performed, in order to 
get statistically representative information about the quantity of interest (Allard et al., 2015).  

In the field of wave energy, the Monte Carlo method has been applied in (Nguyen et al., 2019) 
to assess the long-term extreme response of a point absorber-type WEC. In this study, the 
input variables consisted in the significant wave height, 𝐻𝑠, and the peak wave period, 𝑇𝑝 while 

the quantities of interest were represented by the Power Take Off (PTO) extension and the 
heave force acting on the prime mover of the WEC. The samples of 𝐻𝑠 were randomly drawn 
from a three-parameters Weibull distribution, 𝐹𝐻𝑠(ℎ), while the samples of 𝑇𝑝 were randomly 

drawn from a log-normal conditional distribution 𝐹𝑇𝑝|𝐻𝑠(𝑡|ℎ). A total of 105 input samples were 

generated, and simulations were run via a time-domain, point-load, coupled WEC model. In 
addition, to take into account the short-term variability of the wave conditions, each simulation 
was repeated 10 times with a different random wave phase vector, thus bringing the total 
number of simulations to 106. It is noted that such a number of simulations is  in line what is 
recommended in other guidance documents e.g. (Allard et al., 2015). Figure 15 illustrates the 
extreme PTO extension (left-hand side) and heave force (right-hand side) acting on the WEC 
calculated via Monte Carlo simulations.  

 

 

Figure 15: Extreme PTO extension (left) and heave force (right) on a point-absorber type 
WEC based on Monte Carlo simulations (Nguyen et al., 2019).  

 

A potential disadvantage of a random sampling approach is that it does not ensure that specific 
regions of the input space are covered to an adequate level. This implies that areas of the input 
space related to critical values of the output quantities, e.g., powerful sea states may not be 
appropriately sampled (or not sampled at all), while less critical areas, e.g., mild sea states are 
sampled repeatedly. To potentially overcome this drawback, alternative sampling methods 
have been proposed, such as: 

• Importance sampling. In this approach, the input samples generation includes the use of 
an importance sampling density function which essentially ensures that specific regions of 
interest of the input space are sampled – see (Allard et al., 2015; Owen and Zhou, 2000). 
Figure 16 provides an example of sampling density function, which aims to sample the 
regions around values 휁 = 0.25 and 휁 = 0.75. 
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• Stratified sampling. In a stratified sampling approach, the input space is divided into a 
number of distinct, non-overlapping regions where the number of samples can be 
controlled based on tunable parameters – see (Allard et al., 2015; Mckay et al., 2000). 

 
The main drawback of sampling methods is that, most often, they require a significant number 
of model evaluations to be performed. If the model is computationally expensive, the overall 
effort may become unaffordable. 

 

 

Figure 16: Example of sampling density function for application of the importance sampling 
method, adapted from (Allard et al., 2015).  

 

5.3.3 Surrogate Methods 

To reduce the overall computational effort and thus accelerate the assessment of uncertainty 
propagation through numerical models, methods based on surrogate models have been 
developed. A surrogate model is a simplified model that aims to capture the I/O relationship of 
the original model, for a certain range of the input quantities. As such, a surrogate model 
essentially replaces Eq. (30) with the following: 

휂 = 𝑔(휁) ≈ 𝑠(휁, 𝛽1, 𝛽2, … , 𝛽𝑁) (31) 

Where the function 𝑠(×) defines the surrogate model itself. Most often, a surrogate model is 
not linked to the physics of the modelled phenomena but is rather constructed from simple, 
computationally-efficient high-dimensional functions (Allard et al., 2015). In Eq. (31), the terms 
𝛽𝑛 represent model-specific parameters which are usually determined based on a set of 
training point outputs 휂𝑖 associated with a set of training point input values 휁𝑖. Most often, the 
training point outputs are calculated by using the original numerical model.  

In the nearest neighbour interpolation method, the value of 𝑠(×) at some arbitrary point is given 
by the function value at the closest training point (Allard et al., 2015). Although simple and 
easy to implement, the nearest neighbour method may require a significant number of training 
points to allow a sensible approximation of the original function. 

A potentially more accurate and more widely adopted approach is based on the Polynomial 
Chaos Expansion (PCE) method – see e.g. (Allard et al., 2015; Wiener, 1938). In this 
approach, the output quantity of interest is approximated by a weighted sum of orthogonal 
polynomials of random variables, as: 
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휂 = 𝑔(휁) ≈ ∑ 𝑎𝑖𝜓𝑖(𝑞)

𝑀−1

𝑖=0

 (32) 

where: 

• The terms 𝑎𝑖 represent the weights of the polynomial functions. 

• The terms 𝜓𝑖 represent multivariate orthogonal basis functions. 

• The term 𝑞 is a random variable, which is mapped from the original input variable 휁. 

• M is the number of polynomial terms. 

 
Various methods exist for the estimation of the coefficients 𝑎𝑖, including spectral projection and 
linear regression (Sudret, 2008). In the field of wave energy, the PCE method was adopted in 
(Nguyen et al., 2019) to assess the extreme response of a point absorber-type WEC, which 
was then compared to that calculated via a Monte Carlo approach (see also Section 5.3.2). In 
this study, the input variables 𝐻𝑠 and 𝑇𝑝 were mapped to a pair of variables 𝑄1 and 𝑄2 following 

a Gauss-Laguerre quadrature scheme. A total of 7 x 7 = 49 input points were mapped and 
used as training points. Figure 17 illustrates the sea states selected as training points in the 
original input space (left-hand side) and the mapped input space (right-hand side).  

 

 

Figure 17: Sea states selected as training points in (Nguyen et al., 2019): original input space 
(left) and mapped input space (right). 

 

A six-order PCE model was developed and used to assess the extreme PTO extension and 
the heave force acting on the prime mover of the WEC. Results were compared to those 
provided by a Monte Carlo method, which considered as that providing the “true” estimate of 
the extreme responses. Figure 18 illustrates the probability of exceedence of the PTO 
extension (left-hand side) and heave force (right-hand side), for the PCE model (blue curves) 
and the Monte Carlo simulations (red curves). For each method, 10 curves are illustrated as 
corresponding to 10 different random wave vectors associated with the input variables.  
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Figure 18: WEC long-term response probability of exceedence plots based on Monte Carlo 
simulations (in legend denoted as MCS) and PCE: (left) PTO extension and (right) heave 
force; (Nguyen et al., 2019). 

 

Figure 19 outlines the response statistics (mean and standard deviation) of the extreme PTO 
extension (left-hand side) and heave force (right-hand side), for different probability levels. A 
good agreement between the PCE and the Monte Carlo methods was observed, down to a 
probability of exceedence of 10-5. 

 

 

Figure 19: Mean and standard deviation of extreme PTO extension (left) and heave force 
(right) for the Monte Carlo method (here denoted as MCS) and the PCE method (adapted 
from (Nguyen et al., 2019)). 

 

Often, however, the surrogate model created is used in connection with a sampling method. 
An example of this approach was presented in (Eskilsson et al., 2022) for evaluating the 
sensitivity of the maximum mooring tension to uncertainty in environmental variables as well 
to uncertainties in the mooring/PTO system. The case study was the Uppsala University WEC 
which is made up of a point-absorber tightly moored to a linear generator placed on the sea 
floor. After an initial basic VMEA, five input variables were chosen to be the most important, 
and these were used in the study. For these five variables 1-dimensional PCE surrogate 
models were first created using numerical models run on the quadrature points. Checking that 
a polynomial order of 4 was sufficient (see Figure 20), the study proceeded to the multi-
dimensional case. 
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Figure 20: 1-dimensional PCE surrogate models for maximum mooring tension for (a) PTO 
damping coefficient, (b) drag coefficient, (c) wave period and (d) wave height. From 
(Eskilsson et al., 2022). 

 

It should be mentioned that PCE suffers from the “curse of dimensionality”. While the 
exponential convergence associated with higher order polynomials make PCE fast, for higher 
dimensions the required number of sampling points grows very fast as well. Thus, only a 5-
dimensional case could be investigated, and 100 sampling points were created using the Latin 
hyper cube. Note that the issue of random phase angles was not treated with PCE but with the 
standard approach of 10 realizations. In total 1000 simulations were performed, using the 
software WEC-SIM, to create the 5-dimensional PCE surrogate model of the maximum 
tension. The PCE surrogate model directly holds the mean and variance of the solutions (and 
thus also global sensitivity indices), while probability density functions are usually created by 
a sampling method. The surrogate model was then used in a standard Monte Carlo simulation 
using one million random inputs to yield the probability density distribution, as well as sensitivity 
analysis using Sobol indices, see Figure 21. It can be observed that for the Uppsala WEC, the 
drag coefficient gives the largest contribution to the uncertainty.  

 

 

Figure 21: 5-dimensional PCE surrogate model for the maximum tension for a 100-year sea 
state.  Right: Probability density function, and left: Sobol sensitivity indices; (Eskilsson et al., 
2022). 
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5.3.4 Inference Methods 

Statistical inference methods aim to infer the properties of an entire data population, for 
example by testing hypotheses and deriving estimates – differently from descriptive statistic 
methods, which solely deal with the properties of the observed data. 

The Bayesian method is an inference approach based on Bayes’ theorem, which can be 
expressed by the following equation: 

𝑃(𝐻|𝐸) =
𝑃(𝐸|𝐻)𝑃(𝐻)

𝑃(𝐸)
 (33) 

where: 

• 𝐻 represents a hypothesis, based on previous evidence, whose probability may be affected 
by current evidence (“hypothesis”). 

• 𝑃(𝐻) represents the estimate of the probability of 𝐻 based on previous evidence, i.e., 
before the current evidence (data), 𝐸, is observed (“prior probability”). 

• 𝑃(𝐸|𝐻) is the probability of observing 𝐸 given 𝐻 (“likelihood”). 

• 𝑃(𝐻|𝐸) is the probability of 𝐻 after 𝐸 has been observed (“posterior probability”).  

 
The Dempster-Shafer theory provides an alternative to the Bayesian approach, from which it 
essentially differs on a number of major conceptual parts (James C. Hoffman and Robin R. 
Murphy, 1993). Among such differences: 

• The computation of evidence in Dempster-Shafer theory does not require prior 
distributional information. 

• The Dempster-Shafer theory avoids the Bayesian restriction that commitment of belief to 
a hypothesis implies commitment of the remaining belief to its negation, i.e., the Dempster-
Shafer theory can explicitly represent any ambiguity or ignorance about what has been 
observed. 

 
The study in (James C. Hoffman and Robin R. Murphy, 1993) provides a comparative 
application of the Bayesian approach and the Dempster-Shafer theory, concluding that “both 
methods for dealing with uncertainty yield similar results if analysis is based on equivalent 
problem formulations. […] We believe that Bayesian theory is best suited to applications where 
there is no need to represent ignorance, where conditioning is easy to extract through 
probabilistic representations and prior odds are available”. 

5.4 Model Output Analysis 

Depending on the selected method for the analysis, the uncertainty of model output can be 
expressed as a (multivariate) probability distribution, statistical moments (e.g., mean and 
variance), interval, etc.   

5.4.1 Numerical Uncertainties 

Every numerical simulation contains errors and uncertainties. The terms error and uncertainty 
are linked but not synonyms. Error (δ) refers to the difference between a numerical solution 
(ϕ𝑖) and the exact solution (ϕ0): 

δ = ϕ𝑖 −ϕ0 
 

(34) 

Uncertainty (𝑈ϕ𝑖
) defines an interval that should contain the exact solution with a certain degree 

of confidence: 
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ϕ𝑖 − 𝑈ϕ𝑖
≤ ϕ0 ≤ ϕ𝑖 + 𝑈ϕ𝑖

 

 
(35) 

In the general CFD community many standards for assessing the of quality of the numerical 
solutions have been developed (AAIA, 1998; ASME, 2009; ITTC, 2017) The overarching 
terminology is verification and validation (V&V). As the name suggests there are two main 
steps: (1) the verification step and (2) the validation step.  

The verification stage is commonly understood as making sure that the numerical code is 
working correctly, so-called code verification. By comparing against exact solutions – typically 
relying on simplified equations having the same numerical operators or on manufactured 
solutions – the implementation of the numerical schemes is verified to be correct. If using 
already available numerical models, the code verification task should already have been 
performed by the developers and is nothing for software user to be concerned about. The 
exception is for bespoke code development for WEC modules, e.g., PTO and control algorithm 
implementations. Any such development should go through the code verification step. 

In the validation stage, it is vital to make sure that the underlying mathematical models 
approximate the problem under investigation. Validation is usually done by comparing 
numerical results to experimental test data. The literature on the validation of numerical models 
for WECs is quite vast. Almost all studies of WECs using high-fidelity tools have been focused 
on the validation, although a few studies have used proper V&V, see e.g. (Brown et al., 2021; 
Wang et al., 2018). 

Additionally, there is a second part of the verification stage that is often omitted but should 
ideally be performed for every computational case by the software user: the solution 
verification. Solution verification is described by (Eça and Hoekstra, 2014) as how to  

 

‘estimate the error/uncertainty of a given calculation, for which in general the 
exact solution is not known’.  

 

It is important to stress that solution verification is not the same as making sure the numerical 
solution is ‘grid independent’. That a solution appears grid independent neither implies that the 
solution is properly converged nor that the errors are insignificant and can be disregarded. 
Nevertheless, basic grid convergence studies, given in the eyeball norm, are still widely used 
to illustrate that the solutions are accurate. However, with relatively little extra effort, a proper 
solution verification can be performed, linking the errors of grid convergence to actual 
convergence rate and to estimates of the numerical uncertainty.  It is generally accepted that 
the numerical uncertainties should be below 5% for the solutions to be acceptable and reliable 
(Eça et al., 2010; Stern et al., 2001).  

As mentioned above the total numerical error (ε𝑇) arise from modelling error (휀𝑀), input error 
and numerical error (ε𝑁):   

ε𝑇 = ε𝑀 + ε𝐼 + ε𝑁 
(36) 

The numerical error is in turn made up of several parts: 

ε𝑁 = ε𝑑 + ε𝑖𝑡 + ε𝑟𝑜 + ε𝑠𝑡 
(37) 

where 휀𝑑 is the numerical discretization error, 휀𝑖𝑡 is the iteration error, 휀𝑟𝑜 is the round-off error 
and 휀𝑠𝑡 denotes the statistical errors. Using double precision in the simulations, the round-off 
errors can usually be disregard. This is true most of the time, but we note that especially GPU 
applications might be using single precision. Statistical errors are linked to the simulation length 
and the choice of window for evaluating integral properties. Iterative errors are linked to the 
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solution of the nonlinear equation systems. As a rule of thumb this error can be disregarded if 
the residuals are kept two orders below the discretisation error (Eça and Hoekstra, 2009). 
However, that rule of thumb applies to simulations with fixed objects. For moving objects, the 
iterative errors include errors associated with convergence of the moving body, and this error 
might be significant. Nevertheless, most of the time the discretization error is the dominant 
error and the main part of the solution verification. 

There exist several approaches to V&V for CFD, which differ slightly. The classical solution 
verification method is the grid convergence index by (Roache, 1998). The original grid 
convergence index only requires two grids but has a shortcoming in that it requires monotonic 
convergence.  The (ITTC, 2017) recommendations are based on the method of (Stern et al., 
2001). However, the solution verification method that has been used perhaps most frequently 
in the marine renewables is due to (Eça and Hoekstra, 2014). The Eca and Hoekstar method 
follows from the original grid convernegnce index method but evaluates the convergence in a 
least-square sense. We outline the Eca and Hoekstra approach below.  

All solution verification methods rely on finding out how the solution changes for different 
resolutions in time and space. Let ℎ denote the grid size and subsequently define a sequence 

of 𝑛 grids as ℎ1 < ℎ2 < ⋯ < ℎ𝑛, where ℎ1 denotes the finest grid size. The grid refinement ratio 
ℎ𝑖 ℎ1⁄ represents the ratio of cell size between grids with different densities. For structured grids 
the grid size is straightforward, while for unstructured grids we approximate the grid size as: 

ℎ𝑖 = (
𝑁1
𝑁𝑖
)
1/𝑑

 
(38) 

where 𝑁𝑖 is the total number of degrees of freedom for grid 𝑖and 𝑑 is the dimension of the 
problem.  

Using Richardson extrapolation, the numerical error can be estimated as:  

ε𝑑 ≈ δ𝑅𝐸 = ϕ𝑖 −ϕ0 = 𝑎ℎ𝑖
𝑝
 

(39) 

in which 𝑝 is the numerically obtained order of convergence and 𝑎 is a case specific constant. 
Assuming second order convergence as well as a mixture of first and second order 
convergence we additionally have: 

𝛿𝑅𝐸
02 = ϕ𝑖 − ϕ0 = 𝑎02ℎ𝑖

2 
(40) 

𝛿𝑅𝐸
12 = ϕ𝑖 − ϕ0 = 𝑎11ℎ𝑖

1 + 𝑎12ℎ𝑖
2 

(41) 

Using a least square approach we then evaluate 𝜙0, 𝑝 as well as the constants to obtain the 
errors. 

Following (Roache, 1998) the numerical errors are converted into uncertainties by means of 
safety factors: 

𝑈ϕ = 𝐹𝑆|ε| 
(42) 

The values of the applied safety factors follow from the convergence. If 𝑝 > 0 the convergence 
is monotone, otherwise it is oscillatory. If in addition the convergence is in the asymptotic range 
(0.95 ≤ 𝑝 ≤ 2.05, for a standard second-order scheme) the safety factor is set to 1.25. If the 
convergence is monotonic but not in the asymptotic range, then the safety factor is set to 3. 
To summarize, the uncertainties can be evaluated as: 

𝑈ϕ = 1.25δ𝑅𝐸 +𝑈𝑆 if𝑝 ∈ [0.95,  2.05] (43) 
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𝑈ϕ = min(1.25δ𝑅𝐸 + 𝑈𝑆 ,  3δ𝑅𝐸
12 + 𝑈𝑆

12)  if𝑝 < 0.95 
(44) 

𝑈ϕ = max(1.25δ𝑅𝐸 + 𝑈𝑆 ,  3δ𝑅𝐸
02 + 𝑈𝑆

02)  if𝑝 < 2.05 
(45) 

where 𝑈𝑆, 𝑈𝑆
02 and 𝑈𝑆

12 are the standard deviations obtained from the least square fits. In the 

case of oscillatory convergence, a range-based estimate is employed: 

𝑈ϕ = 3δΔ𝑀 (46) 

in which the error between the maximum and minimum is obtained as:  

δΔ𝑀 =
max|ϕ𝑖 −ϕ𝑗|

(ℎ𝑁𝑔/ℎ1) − 1
 1 ≤ 𝑖, 𝑗 ≤ 𝑁𝑔 (47) 

We exemplify the use of the Eca and Hoekstra method for the case of estimation of drag 
coefficient for a case of Detached-Eddy simulations of flow over an infinitely wide plate with 
rounded edges (Andersen and Eskilsson, 2023), see Figure 22. 

 

 

Figure 22: The iso-contour showing the vortex shedding after an infinitely wide plate with 
rounded edges. Flow is from left to right. From (Andersen and Eskilsson, 2023). 

 

Using seven levels of spatial resolution, as presented in Table 9, we get a monotonic 
convergence in the asymptotic range (Figure 23). The associated level of uncertainty thus 
becomes low, and using the rule-of-thumb of 5% uncertainty we can with confidence use the 
4.5M cell setup for the further analysis. 
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Table 9: Investigated spatial and temporal resolutions. 𝑁𝑧 denotes the number of cells in the 
spanwise direction. From (Andersen and Eskilsson, 2023) 

Case ℎ𝑖/ℎ1  

[-] 

𝑁𝑐𝑒𝑙𝑙𝑠  

[1e6 
cells] 

𝑁𝑧 

[cells] 

Δ𝑡𝑢0/ℎ 

[-] 

〈𝐶𝐷〉𝑡 

[-] 

Δ𝑟𝑒𝑙 

[%] 

𝑈〈𝐶𝐷〉𝑡 

[%] 

1 1.00 10.3 48 6e-4 2.28 0.0 2.7 

2 1.29 6.0 48 6e-4 2.28 0.2 3.7 

3 1.49 4.5 48 6e-4 2.26 0.6 4.6 

4 1.66 3.6 48 6e-4 2.23 2.1 5.4 

5 2.08 2.3 48 6e-4 2.23 2.1 7.8 

6 2.58 1.5 48 6e-4 2.10 8.0 11.3 

7 3.16 1.0 48 6e-4 2.05 9.9 16.4 

 

 

 

Figure 23: Estimated convergence of time averaged drag coefficient 〈𝐶𝐷〉𝑡 from spatial 

resolution in the 𝑥𝑦-plane. From (Andersen and Eskilsson, 2023). 

 

While the use of solution verification greatly assists in assessing and improving the reliability 
of the numerical solutions there are still issues with regard to its implementation for wave 
energy applications. The most pressing would be how to apply this to standard linear potential 
flow applications. Here the numerical errors are likely to be of less importance compared to 
the modelling errors. How then to assess 𝜙0? For high-fidelity simulations of wave energy 
devices, we still have problems for cases with irregular/non-harmonic response. What 
parameters should we use when assessing the uncertainty?  
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5.4.2 Sensitivity Analysis 

The result of the uncertainty analysis is an estimate of the range in which the model outputs is 
likely to fall, as a consequence of the uncertainty in all relevant input and solver characteristics 
and assumptions. This estimate can be further analysed in a Sensitivity Analysis (SA), which 
can be defined as (Saltelli et al., 2007) 
 

‘The study of how uncertainty in the output of a model (numerical or otherwise) 
can be apportioned to different sources of uncertainty in the model input’  

 

The purpose of SA is to screen how uncertain inputs contribute to the output uncertainty, 
thereby giving some indication on how to to reduce it. The quantitative ranking of input 
parameters according to some sensitivity index provides a rationale to focus the available 
resources on the most significant design variables. An SA can be said to be either local or 
global. Fundamentally, a local SA looks at the effect of an infinitly small perturbation of a single 
input parameter while the other part does not change, yielding a gradient of the function. For 
a nonlinear function, the derivative will vary, so a local SA is only applicable in a small range 
(Saltelli et al., 2007), A global SA, however, looks at the entire parameter space with the 
combined effects of several input parameters. Thus, the global SA is typically the preferred 
method, but can carry a high computational cost. While SA might seem straightforward, many 
reported SA falls below the acceptable criteria (Saltelli et al., 2019).  

In the following we let 𝑔(𝑋) denote a function and 𝑆𝑖 the sensitivity index of the 𝑖th model input 

𝑥𝑖. Different approaches to SA are discussed below (Borgonovo and Plischke, 2016; Reed, 
Patrick M. et al., 2023; Saltelli et al., 2007): 

Derivative-based methods. Using a one-at-a-time approach, the sensitivity index is simply 
evaluated as: 

𝑆𝑖(�̅�) =
𝑔(𝑥1̅̅ ̅, … , 𝑥�̅� + Δ𝑖, … , 𝑥𝑁̅̅̅̅ ) − 𝑔(𝑥1̅̅ ̅, … , 𝑥�̅�, … , 𝑥𝑁̅̅̅̅ )

Δ𝑖
𝑐𝑖 

(48) 

in which Δ𝑖is the perturbation and 𝑐𝑖 a scaling factor. This is a local method, and while 
computationally cheap, it can not investigate the entire parameter space in addition to missing 
out on any interaction effects. 

Elementary effect methods. Elementary effect is an extension of the derivative-based method. 
While still using the one-at-a-time approach, elementary effect allows us to cover the entire 
parameter space. This is accomplished by dividing the parameter space into 𝑟 trajectories (or 
sample repetitions), and use the sampling methodology of (Morris, 1991). Thus, the sensitivity 
index can be estimated as:  

𝑆𝑖 = 𝜇𝑖 =
1

𝑟
∑𝐸𝐸𝑖

𝑗

𝑟

𝑗=1

=
1

𝑟
∑

𝑔(𝑥1̅̅ ̅, … , 𝑥�̅� + Δ𝑖, … , 𝑥𝑁̅̅̅̅ ) − 𝑔(𝑥1̅̅ ̅, … , 𝑥�̅�, … , 𝑥𝑁̅̅̅̅ )

Δ𝑖
𝑐𝑖

𝑟

𝑗=1

 (49) 

In addition to the mean of elementary effects, the variance can be found as:  

𝜎𝑖 = √
1

𝑟
∑(𝐸𝐸𝑖

𝑗
−
1

𝑟
∑𝐸𝐸𝑖

𝑗

𝑟

𝑗=1

)

2
𝑟

𝑗=1

 
(50) 

It is customary to plot 𝜇𝑖 against 𝜎𝑖 in a scatter plot, referred to as Morris plot. Parameters close 
to the origin are unimportant. A large 𝜇𝑖 means that the parameter has a high sensitivity, while 
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a large 𝜎𝑖 means that we have interaction or nonlinear effects and thus often hard to estimate 
correctly.   

Regression-based methods. By using a least-square approach we can fit a linear regression 
relation between the input vector 𝑥 and the output vector 𝑦:  

𝑦 = 𝑏0∑𝑏𝑖𝑥𝑖

𝑁

𝑖=1

 
(51) 

where 𝑏𝑖are the regression coefficients. Then the standardized regression coefficients (SRC) 
can be used as sensitivity indices and computed as:  

𝑆𝑖 = 𝑆𝑅𝐶𝑖 = 𝑏𝑖
𝜎𝑖
𝜎𝑦

 (52) 

in which 𝜎𝑖 and 𝜎𝑦 are the variances of the 𝑖th input and the output. There exist versions of the 

SRC such as Pearson correlation coefficient (PCC) and Spearman’s rank correlation 
coefficient (SRCC), see (Reed, Patrick M. et al., 2023). The regression-based methods are 
global methods but have a clear disadvantage of showing poor performance for nonlinear 
models. 

Variance-based methods. Variance-based methods decompose the output variance into parts 
associated with input and interpret this as a measure of sensitivity. While there exist different 
types of variance-based methods, like the Fourier amplitude sensitivity test, the most widely 
used is the Sobol method (and variants thereof) (Sobol, 1993). Sobol’s method gives three 
different sensitivity indices: first-order, higher-order and total Sobol sensitivity indices. The first-
order sensitivity index gives the percentage of output variance due from a single input as: 

𝑆𝑖
1 =

𝑉𝑥𝑖[𝐸𝑥∼𝑖(𝑥𝑖)]

𝑉(𝑦)
 

(53) 

where 𝐸 is the expected value and 𝑉 is the variance. 𝑥∼𝑖 denotes all values except 𝑥𝑖. Higher-
order indices give information about interaction between two or more parameters that 
contribute to model output variations. The computations are tedious and most often just the 
second-order indices are computed: 

𝑆𝑖,𝑗
2 =

𝑉𝑥𝑖,𝑗 [𝐸𝑥∼𝑖,𝑗(𝑥𝑖, 𝑥𝑗)]

𝑉(𝑦)
,𝑖 ≠ 𝑗 

(54) 

Finally, the total Sobol indices is computed as:   

𝑆𝑖
𝑇 =

𝐸𝑥∼𝑖[𝑉𝑥𝑖(𝑥~𝑖)]

𝑉(𝑦)
= 1 −

𝑉𝑥~𝑖[𝐸𝑥𝑖(𝑥~𝑖)]

𝑉(𝑦)
 

(55) 

It is often the best measure of sensitivity as it includes all individual and interaction effects. 

5.4.3 Software Tools 

There exist a fair number of open-source UQ and SA frameworks, see Figure 24. 
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Figure 24: Sensitivity analysis packages available in different programming language 
platforms (R, Python, Julia, MATLAB, and C++), with the number of methods they support. 
Packages supporting more than five methods are indicated in pink. Packages updated since 
2018 are indicated with asterisks (Reed, Patrick M. et al., 2023). 

 

The most well-known are UQLab, Dakota and OpenTurns, which are complete frameworks 
covering DoE, sampling methods, surrogate models, reliability and sensitivity models. 

UQLab (Marelli and Sudret, 2014) is a MATLAB-based UQ framework, with extensive 
documentation and tutorials, developed by ETH Zurich. UQLab is divided into 18 different 
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scientific modules, all with their individual documentation. UQLab supports PCE, Gaussian 
process (Kriging), combinations thereof, support vector machines, reliability analyses and 
sensitivity analyses, etc. As it is based on MATLAB the framework is rather easy to get started.  

Dakota (Adams et al., 2021) is a UQ and optimization software written in C++ by Sandia. 
Initiated already in 1994, it is a mature tool for production. Dakota supports sampling-based 
approaches, local and global reliability methods, and stochastic expansion (polynomial chaos 
expansions, stochastic collocation, and functional tensor train) approaches. Due to its C++ API 
DAKOTA is easier to create direct interfaces between the UQ framework and numerical 
simulation models.  

OpenTurns (Baudin et al., 2015) is a developed in python the French companies Airbus, EDF, 
IMACS, ONERA and Phimeca. OpenTurns includes tools for probabilistic modelling, 
uncertainty propagation through sampling, sensitivity analysis, surrogate models (Kriging, 
Karhunen-Loève, Polynomial Chaos) etc. OpenTurns has an extensive examples section and 
has a text-based code coupling facility. 
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6 Design and Reliability Assessment 

Section 5 gives a general overview of design and reliability methods connected to UQ in hybrid 
testing. The aim is to provide a few fundamental applications of UQ in the test evaluation, 
decision making and reliability evaluation stages. 

6.1 Test Evaluation 

As introduced in Section 2, and detailed in Sections 3 and 4, measurement uncertainty should 
quantitatively be expressed as the standard deviation of the measurement. First, the basics of 
measurement uncertainty will be summarized, and then some basic applications will be 
discussed.  

6.1.1 Expression of Measurement Uncertainty 

The result of the measurement process should not be expressed by a single value, rather it 
should also be associated with its uncertainty. The measurement uncertainty of a measured 
quantity, 𝑦, is quantified in terms of its standard uncertainty, 𝑢𝑦, which is the standard deviation 

of measurement, 𝑦. Moreover, the measurement uncertainty is often expressed as an 
uncertainty interval, which is interpreted as the range of values where the true value of the 
measured quantity is expected to fall in with a chosen confidence. The interval is expressed 
as: 

𝑦 ± 𝑈 (56) 

where 𝑦 is the measured value, and 𝑈 is the so-called “expanded uncertainty”. Often a 95% 
confidence level is used, which results in an expanded uncertainty as 𝑈 = 2𝑢𝑦, using the 

quantile of the normal distribution. Other confidence levels may be chosen, and the expanded 
uncertainty is then adjusted correspondingly. This is handled by formulating the expanded 
uncertainty as 𝑈 = 𝑘 ⋅ 𝑢𝑦, and using the normal distribution to calculate the coverage factor, 𝑘, 

according to the specified confidence level. Table 10 shows commonly used confidence levels 
and their corresponding coverage factors. For the full justification of Eq. (56) , the reader is 
referred to Sections 3 and 4 and the references therein.  

 

Table 10: Confidence levels for expanded uncertainty and their corresponding coverage 
factors. 

Confidence level 80% 90% 95% 98% 99% 99.8% 99.9% 

Coverage factor, 𝒌 1.28 1.64 1.96 2.33 2.58 3.09 3.29 

 

6.1.2 Averaging Results 

A standard method to reduce the measurement uncertainty is to repeat the measurements and 
then average the results. In such a scenario, repeated measurements (𝑛) of the same property 
are performed, and the mean of the results is calculated: 

�̅� = ∑𝑦𝑖

𝑛

𝑘=1

 (57) 

Generally, the rationale for multiple tests is to obtain more certain estimates of the property in 
question, by reducing the random part of the measurement uncertainty from the testing.  
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First consider the case when all input variables are purely random, and thus no systematic 
errors are present in the measurement. Assuming statistically uncorrelated measurements 
gives the standard uncertainty for the mean as: 

𝑢�̅� =
𝑢𝑦

√𝑛
 (58) 

where it can be observed that the measurement uncertainty is inversely proportional to the 
square root of the number of measurements. Consequently, increasing the number of 
measurements by a factor four will reduce the standard uncertainty to half. 

However, often a part of the measurement uncertainty consists of systematic errors that will 
not be reduced when averaging. In this situation it is important to distinguish between random 
and systematic effects in the standard uncertainty, which can be formulated as: 

𝑢𝑦
2 = 𝑢𝑦,𝑟𝑎𝑛𝑑𝑜𝑚

2 + 𝑢𝑦,𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐
2  (59) 

where 𝑢𝑦,𝑟𝑎𝑛𝑑𝑜𝑚 is the random part, and 𝑢𝑦,𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 is the systematic part of the standard 

uncertainty 𝑢𝑦. Note that uncertainties should be summed in squares. The standard uncertainty 

for the average can then be calculated as: 

𝑢�̅� = √
𝑢𝑦,𝑟𝑎𝑛𝑑𝑜𝑚
2

𝑛
+ 𝑢𝑦,𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐

2  (60) 

It can be observed from Eq. (61) that the random contribution to the uncertainty in the average 
diminishes as the number of tests increases, while the systematic contribution remains 
unchanged. 

6.1.3 Identifying Weak Spots in Testing 

It is important to systematically work on the quality and improvement of the testing. MSA is 
such a tool, where a systematic assessment of measurement uncertainty will enable the 
identification of weak spots in the test set-up and in the execution of the testing. It allows the 
identification of the major sources of uncertainty and, thus, guides improvement work in order 
to systematically increase the accuracy of the measurements. This topic is discussed in detail 
in Section 3. 

6.2 Decision Making 

Testing is often performed in order to support the design process or to fulfil some requirement. 
Typical applications can be to make sure that the product requirements are fulfilled with a given 
confidence. Other cases include comparing two different products, or comparing two material 
choices for the same product. 

6.2.1 Comparing to a Limit 

The expanded uncertainty interval can be used when comparing the result to a limit, according 
to the two following cases: 

1. If a measured value should be compared to an upper limit, then the tested product is 
accepted if the result plus the expanded uncertainty is below the limit, see Figure 25(a). 

2. If a measured value should be compared to a lower limit, then the tested product is 
accepted if the result minus the expanded uncertainty is below the limit, see Figure 
25(b). 
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(a) Comparing to an upper limit (b) Comparing to a lower limit 

  

Figure 25: Comparing to a limit. 

 

6.2.2 Comparing Two Products 

If two measured values should be compared, then the uncertainty of the difference shall be 
evaluated. The confidence interval for the difference is calculated according to: 

𝑦2 − 𝑦1 ±√𝑈𝑦1
2 +𝑈𝑦2

2  (61) 

where 𝑈𝑦1 and 𝑈𝑦2 are the expanded uncertainties of the two measurements, representing the 

same confidence level. Thus, there is a significant difference only if the difference between the 
measured values is larger than the square root of the square sum of the individual expanded 
uncertainties. 

6.3 Reliability Evaluation 

Reliability can generally be defined as the ability of a product, system, or service to perform its 
intended function adequately for a specified period of time and under specified operating 
conditions; following (Hodges et al., 2021) and VALID D1.1 (Bargiacchi et al., 2021). Reliability 
may be quantified by a probability; however, in engineering design it is often more convenient 
to express the reliability requirements in terms of a reliability index, which can be related to 
safety distances or safety factors. 

A reliability assessment takes both the load and strength into account. Thus, it includes 
uncertainties not only from the strength testing, but also uncertainties related to e.g. the 
environmental loads, the usage in operation, and the manufacturing and assembly process; 
see e.g. the five categories of uncertainties in Figure 6, Section 3.2. The load and strength 
may be illustrated as statistical distributions, see Figure 26.  

 

 

Figure 26: Illustration of interaction of load and strength. 

 

The aim of this section is to illustrate some methods for reliability evaluation, rather than to 
give a detailed review of the topic. For the interested reader, there is a vast literature on 
reliability, e.g. (O’Connor and Kleyner, 2012), (Melchers and Beck, 2018) and (Ditlevsen and 
Madsen, 2007), and also relevant standards and design codes, e.g. Eurocode (CEN/TC 250, 
2002) and (JCSS, 2001). 
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6.3.1 Characteristic Strength 

The characteristic strength can be defined as that level of strength below which not more than 
a specified proportion of all test results is expected to fail. Often this proportion is chosen to be 
5%, in e.g. the Eurocode standard, (CEN/TC 250, 2002). The mean or nominal strength is 
defined as the strength below which 50% of the test results are expected to fail.  

The characteristic strength may be calculated as:  

𝑆𝛼 = 𝑆𝑛𝑜𝑚 − 𝑘𝛼 ⋅ 𝑢𝑦 (62) 

where 𝑆𝑛𝑜𝑚 is the nominal strength, 𝑘𝛼 is the quantile corresponding to probability 𝛼 and 𝑢𝑦 is 

the standard uncertainty. 

The strength is often modelled in its logarithmic form:  

ln 𝑆𝛼 = ln 𝑆𝑛𝑜𝑚 − 𝑘𝛼 ⋅ 𝑢𝑦 (63) 

giving 

𝑆𝛼 = 𝑆𝑛𝑜𝑚 ⋅ exp(−𝑘𝛼 ⋅ 𝑢𝑦) = 𝑆𝑛𝑜𝑚 ⋅ 𝛾𝛼  (64) 

where 𝛾𝛼 is called a partial coefficient. Several additional partial factors may be included to 
account for different effects, in order to obtain the design strength. The design load is defined 
in a similar manner as the design strength, on the same scale. In the partial factor method the 
design strength is then compared to the (factored) design load, see e.g. Eurocode (CEN/TC 
250, 2002) and DNV-GL (“DNVGL-RP-C203,” 2014; “DNVGL-OS-C101,” 2016) for more 
details. 

6.3.2 Reliability Index and Safety Factors 

The reliability target is often formulated such that the target function should exceed some limit 
with a proper safety margin. Here, it is assumed that the target function is formulated as (or 
can be re-formulated as) a so-called limit state function, with values below zero representing 
failure. Thus, the target function should exceed zero with a proper safety margin. The Cornell 
reliability index, (Cornell, 1969), is first presented, and then a method for deriving safety factors 
is demonstrated. It should also be noted that there are more advanced methods for reliability 
indices, e.g. the Hasofer-Lind reliability index (Hasofer and Lind, 1974), which is based on 
normal distribution of the input variables, and has the advantage of being invariant to the 
formulation of the target function.  

The Cornell reliability index represents a first-order, second-moment method, and thus fits well 
together with the VMEA method which is based on second-moment statistics. The result from 
the probabilistic VMEA can easily be transformed into the Cornell reliability index. For the 
general formulation using the limit state function 𝑓(⋅), the reliability index 𝛽 is given by:  

𝛽 =
𝛿

𝜏
 (65) 

with: 

𝛿 = 𝐸[𝑓(𝑋1, 𝑋2, 𝑋3, … )]and𝜏 = √Var[𝑓(𝑋1, 𝑋2, 𝑋3, … )] (66) 

where 𝛿 is the mean value of the target function and 𝜏 is its standard deviation. The reliability 
index is sometimes denoted as safety index or distance from failure mode, since it can be 
interpreted as the number of standard deviations from the failure mode, see e.g. (O'Connor, 
2002; Davis, 2006). The reliability index is useful for defining design targets, but also for 
comparing different design alternatives and to evaluate the effect improvement measures. 

It is often convenient to formulate the target function in terms of load and strength, more 
generally denoted demand and capacity. In engineering, they are often modelled in logarithmic 
scale. For the case of load and strength, the limit state function is then formulated as: 
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𝑓(𝑋1, 𝑋2, 𝑋3, … ) = ln(𝑆(𝑋1, 𝑋2, 𝑋3, … )) − ln(𝐿(𝑋1, 𝑋2, 𝑋3, … )) (67) 

where ln(𝑆) and ln(𝐿), are the load and strength variables, respectively. The reliability index is 
given by:  

𝛽 =
𝛿

𝜏
with𝛿 = ln(𝑆𝑛𝑜𝑚) − ln(𝐿𝑛𝑜𝑚) (68) 

where the numerator 𝛿 is the nominal (or mean) difference between the logarithmic values of 

scalar metrics of strength ln(𝑆𝑛𝑜𝑚) and load ln(𝐿𝑛𝑜𝑚), respectively, and the denominator 𝜏 is 
a measure of the uncertainty corresponding to the statistical standard deviation.  

The reliability index is often used for comparing the determined index value with a predefined 
requirement, say 𝛽 > 𝛽𝑟𝑒𝑞, giving the requirement of the safety margin, i.e., the separation 

between nominal strength and load values:  

ln(𝑆𝑛𝑜𝑚) − ln(𝐿𝑛𝑜𝑚) > 𝛽𝑟𝑒𝑞 ⋅ 𝜏 = 𝛿𝑟𝑒𝑞 (69) 

For structural reliability, the Joint Committee on Structural Safety, (JCSS, 2001), gives some 
guidance on determining the required safety index, 𝛽𝑟𝑒𝑞. 

Furthermore, it is possible to derive a safety factor from the reliability index when the load and 
strength variables are defined in logarithmic scale. The relation between the reliability index 
and a safety factor is just a mathematical transformation, namely:  

𝑆𝐹𝛽 = exp(𝛽𝑟𝑒𝑞 ⋅ 𝜏) (70) 

Finally, if it is assumed that the difference ln(𝑆𝑛𝑜𝑚) − ln(𝐿𝑛𝑜𝑚) is normally distributed, the 
reliability index can be converted to a probability of failure:  

𝑃𝐹 = Φ(−𝛽) (71) 

where Φ(⋅) is the cumulative distribution function of the standard normal distribution. However, 
such relations are highly doubtful, since the assumption of normality is only speculative for 
such low probabilities of failure that are the result of high requirements on 𝛽. Therefore, it is 
suggested to use the probabilities as notional values for defining design requirements of for 
comparing different design solutions, rather than trusting the calculated probability value, see 
e.g. (Kiureghian and Ditlevsen, 2009). 
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Part B: Applications to VALID User Cases  

 

In this part, the uncertainty analyses performed on the VALID User Cases are explained. A 
qualitative assessment was performed during a series of workshops where the insights of 
various stakeholders were gathered and categorized using the framework of Basic VMEA. 
Individual sources of uncertainty were identified and ranked according to their expected impact 
as estimated by technical specialists in each of the test rigs targeted in the User Cases. After 
this screening exercise, the uncertainties were quantified and aggregated using the framework 
of Probabilistic VMEA.  
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7 User Case #1: CorPower 

The CorPower WEC is of point absorber type, with a heaving buoy on the surface, absorbing 
energy from ocean waves, which is connected to the seabed using a tensioned mooring line. 
A composite buoy, interacting with this wave motion, drives a PTO, a powertrain located inside 
the buoy, that converts the mechanical energy into electricity. By means of novel and patented 
technologies, the CorPower WEC moves in resonance with incoming waves, making it move 
in and out of the water surface, whereas in a conventional point absorber, the buoy follows the 
motion of the waves. The CorPower WEC uses a combination of pretension and the 
WaveSpring technology to better leverage the motion of the waves by pushing the buoy into 
perfect timing with each wave. Consequently, the buoy motion increases due to resonance, 
and along with it, so does the power output. The main components of the CorPower WEC are 
shown in Figure 27, where the critical sealing components are the wave springs, the pre-
tension cylinder and the ocean rods. 

 

 

Figure 27: The CorPower WEC and subsystem overview.  

 

7.1 Dynamic Seals 

Seals between moving parts are called dynamic seals. Seals are used to separate two media, 
e.g., oil and water or air and seawater. Different kinds of seals are used depending on the 
kinds of media to be separated, as well as the operating conditions. Dynamic sealing systems 
can be exposed to severe conditions and subject to complex physical interactions between 
housings, sliding surfaces, sealing components, lubrication media and outside environment.   

Figure 28 shows an annotated illustration of a typical piston chamber sealing system. Here 
you can see standard components such as the seals, O-rings, seal carrier, mating surface, 
and guide rings. The majority of CorPower’s dynamic sealing systems consists of the seal 
itself, an O-ring to provide sufficient contact pressure of the seal against the mating surface, 
and the mating surface itself. Guide rings are occasionally used in situations where large side 
forces can arise. These are stiff components that are designed to guide the mating surface 
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within the seal gland, and avoid the seals having to react large transverse forces. Sealing 
systems often consist of several seals and/or guide rings in series.  

 

 

Figure 28: Illustration of a typical piston chamber sealing system. 

 

7.2 Overview of the Test Rig  

The key piece of equipment within the WP3 test campaign is the dynamic seal test rig. The 
seal rig is a customised piece of testing equipment specifically designed to test dynamic 
sealing systems, see Figure 29.  

 

 

Figure 29: The CorPower dynamic seal test rig. 

 

The aim of the component testing in WP3 is to fully characterise CorPower’s sealing systems 
over a range of speeds and accelerations, with consideration for degradation mechanisms 
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such as wear, fatigue at joints, corrosion, tribocorrosion, and biofouling. The results will be 
used to better quantify the reliability and survivability of the sealing systems, as well as to 
implement a component model of the seals within CorPower’s Wave-2-Wire model. The seals 
test rig is used to evaluate friction, leakage and life. Parameters that can be controlled or 
measured are movement, forces, pressure, temperature and lubrication. 

7.3 Basic VMEA 

The information gathered during the first series of UQ workshops with CorPower using basic 
VMEA will be presented here, together with some reflections on their outcomes. The 
subsections reflect the main stages of the VMEA methodology. 

7.3.1 Target Variable 

The main goal here is to define the physical quantity measured in the test rig for which the 
measurement uncertainty is being quantified. There are two different types of dynamic sealing 
systems in the WEC, high pressure seals and ocean seals. This assessment will focus on the 
ocean seals that are exposed to sea water.  

The material for the sealing system is: 

• Seals: Polyethylene  

• Rod: Metal 

 
The design case considered is the Fatigue Limit State (FLS), i.e., we consider loads 
contributing to wear of seals. The load conditions for the ocean seals are: 

• External loads: Ocean environment  

• Component loads: Travelled distance of seal, speed, turning points, pressure, temperature, 
lubrication, etc.  

 

 

The failure type considered is seal failure due to wear, where the consequence is leakage. 
Hence, the target variable is the life of seals due to the wear process. 

Acceleration can be achieved by means of, for example, speed, pressure, temperature and 
lubrication quality. The test object has a diameter of d=80 mm, which corresponds to 
approximately 1:4 scale compared to full-scale WEC. The design life for sealing systems is 
typically 5 years, whereas the design life for the WEC system is 20 years. 

More details on material, load cases, and acceleration, etc., are found in VALID D3.1, (Harnden 
et al., 2022).The bottom line is that the target variable is defined as “Life of ocean seals due to 
wear process”. 

7.3.2 Identification of Uncertainty Sources 

The uncertainty sources identified during the workshops are summarized in Figure 30. The list 
of uncertainties originated from the discussion at the workshops but also from earlier analysis 
reported in other deliverables, e.g., FMECA, experience from other projects, and technical 
literature. 
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Figure 30: Identified uncertainty sources in basic VMEA for UC#1, CorPower. 

 

In the screening exercise based on basic VMEA, we did not investigate in detail the 
uncertainties in the virtual part of the test rig. A more in-depth analysis of this aspect was 
reserved to a later stage, partly because the actual implementation of the virtual components 
of the test rig was not fully defined. The focus in the basic VMEA work was more on the design, 
manufacture and operation of the physical devices, as well as on the differences between the 
test and the marine environment.  

7.3.3 Assessment of Uncertainties 

In Table 11, the assessment of size and sensitivity, on a scale from 1 to 10, is presented for 
the various uncertainty sources identified during the workshops. 
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Table 11: Assessment of uncertainties in basic VMEA for UC#1, CorPower. 

 

 

7.3.4 Evaluation of Total Uncertainty 

The total variation is calculated as the square sum of the resulting variation from the sources, 
resulting in the total VRPN. The relative contribution of the VRPN from the different uncertainty 
sources are of interest rather than the absolute value of the total VRPN. The Pareto chart in 
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Figure 31 shows the resulting ranking of the various uncertainty sources identified during the 
workshops, highlighting those which contribute most to the uncertainty of the target variable. 

  

 

Figure 31: Pareto chart of uncertainties in basic VMEA for UC#1, CorPower. 

 

7.3.5 Conclusions and Lessons Learned 

The largest variation contributions are shown in Table 12, where the larges one is due to error 
in numerical simulation. However, note that all uncertainties due to numerical simulation are 
combined into a single source. This will be divided into several uncertainty sources in the 
detailed studies later.  

 

Table 12: The largest uncertainties in basic VMEA for UC#1, CorPower. 

Uncertainty components Proportion 

Errors in numerical simulation 10% 

Acceleration - Pressure 7% 

Acceleration - Temperature 7% 

Acceleration - Lubrication 7% 

Scaling - Rod diameter 7% 

Bio fouling environment 5% 

Rod roughness 5% 
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It can also be of interest to study the relative contribution of uncertainties between the five 
categories of uncertainties, see Figure 32. Here we can observe that “Life & wearout” group 
contributes to 50% of the total variation. The contributions mainly originate from lack of 
knowledge of wear models including material degradation in the different lubrication regimes, 
the impact of marine growth and acceleration effects. Hence, it points at the importance of 
studying the wear models, acceleration effects, and scaling models. 

 

Figure 32: The variation contribution by group of uncertainties in basic VMEA for UC#1, 
CorPower 

 

7.4 Probabilistic VMEA 

The second series of workshops on the probabilistic VMEA was carried out about 9 months 
after the basic VMEA workshops. During that period of time, the upgrade of the CorPower test 
rig was completed, and some initial tests had been performed, allowing for more detailed 
information of the test rig and uncertainties. In the probabilistic VMEA each source of 
uncertainty is evaluated in physical units by means of its size and sensitivity with respect to 
the target variable uncertainty. The procedure for the probabilistic VMEA is the same as for 
the basic one. The information from the basic VMEA is used as a starting point and it is re-
evaluated or refined when needed. 

It was decided to limit the scope of the workshops to uncertainties directly connected to the 
hybrid testing, thus disregarding uncertainties related to environmental conditions and 
manufacturing (these can instead be evaluated later following the same process). The results 
from the second series of UQ workshops with CorPower using probabilistic VMEA are 
summarized below, together with some reflections on their outcomes. The subsections reflect 
the main stages of the VMEA methodology. 

7.4.1 Target Variable 

The target variable was confirmed to be the life of the dynamic ocean seals. The target variable 
was formulated in terms of the logarithmic life, namely , 𝑌 = ln𝑁 = 𝑓(𝑋1, 𝑋2, … ), as suggested 
in section 3.4.1 and exemplified in section 3.4.6. 

21%

6%

19%

50%

4% VRPN Contribution by Group
Environmental conditions

Physical test rig

Virtual test rig (numerical
simulations)
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This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 101006927.  

 

 Page 86 of 119 
 

7.4.2 Uncertainty Sources 

The list of uncertainty sources was reviewed and in that process some adjustments and 

refinements were made. The list of uncertainty sources is reflected in the resulting 

probabilistic VMEA table (see Table 15 below). 

7.4.3 Assessment of Uncertainties 

At this stage, limited information and data from the testing is available. Therefore, the 
probabilistic VMEA assessment is mainly based on engineering judgement together with 
information from literature. The uncertainties of input variables were assessed in logarithmic 
scale, which corresponds to percentage uncertainty. Thus, the sensitivity coefficients are 
evaluated with respect to the logarithmic variables, and the input uncertainties are assessed 
as relative uncertainties. The full detailed assessment will not be reported here, However, an 
overview and some examples of the assessment for selected uncertainty sources will be given. 
The resulting assessments are presented in Table 15 below. 

Most of the uncertainties connected to the physical test rig were assessed based on informed 
guesses or measurement uncertainty specifications for the measurement equipment.  

The numerical uncertainties originate from the numerical WEC simulation model. A more 
detailed assessment was performed compared to the basic VMEA, however, it was primarily 
based on engineering judgement. The errors in the four relevant output variables from wave-
to-wire model were assessed in terms of maximum error according to Table 13. These 
maximum errors, (±𝑑), were then converted to a standard deviation assuming a uniform 
distribution, using: 

𝑢 =
𝑑

√3
 (72) 

see Section 3.4.4.2 for details. 

 

Table 13: Assessment of errors in the wave-to-wire model, UC#1 - CorPower. 

Wave-2-Wire model Judged error 

Travelled distance Max ±1% in life 

Number of turning point Max ±40% in life 

Pressure Max ±5% in pressure 

Temperature Max ±10 Kelvin temperature 

 

The uncertainties connected to the life modelling includes acceleration, scaling, corrosion, and 
marine growth effects. The uncertainties associated to these effects were assessed based on 
engineering judgement where experience from previous testing and information from literature 
are incorporated. All these uncertainties were assessed in terms of maximum error with respect 
to life, as shown in Table 14, and transformed into a standard deviation using Eq. (72).  
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Table 14: Assessment of errors in life modelling for VMEA, UC#1 - CorPower. 

Model parameter Judged error 

Acceleration model error - TTD (Total travelled 
distance) 

Error in life at most ±10% 

Acceleration model error - Number of turning points Error in life at most ±25% 

Acceleration model error - Pressure Error in life at most ±5% 

Acceleration model error - Temperature Error in life at most ±10% 

Scaling model error - Rod diameter Error in life at most ±10% 

Scaling model error - Stroke length Error in life at most ±20% 

Scaling model error - Reversal at same position Error in life at most ±20% 

Model error - Corrosion prediction Error in life at most ±25% 

Model error - marine growth prediction Error in life at most ±40% 

 

7.4.4 Evaluation of Total Uncertainty 

The results of the probabilistic VMEA are summarized in the VMEA table presented in Table 
15. The total uncertainty is calculated as the root sum of square of the resulting uncertainty 
from each source. We can observe that the total uncertainty is estimated to 60%, which 
represents the measurement uncertainty of the CorPower hybrid testing. The relative 
contribution, in terms of variance contribution, from the different uncertainty sources are 
presented in the last column in Table 15. The result is best illustrated by graphs, e.g., the 
Pareto chart in Figure 33 shows the resulting ranking of the various uncertainty sources 
identified during the workshops, highlighting those ones which contribute most to the 
uncertainty of the target variable.  
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Table 15: VMEA table for probabilistic VMEA, UC#1 - CorPower. 
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Figure 33: Pareto chart of uncertainties in probabilistic VMEA for UC#1, CorPower. 

 

7.4.5 Conclusions and Lessons Learned 

The probabilistic VMEA gives an estimate of the measurement uncertainty of the hybrid testing, 
but also gives input to the improvement work. The overall picture of the largest contributions 
to the total uncertainty is similar to the result from the basic VMEA. The largest variation 
contributions are shown in Figure 33. Note that the “Error in numerical simulation” in the basic 
VMEA has now been assessed in more detail and been split into four uncertainty sources. It 
should also be noted that the uncertainties connected to the temperature give the largest 
contributions. The reason behind this is the difficulty in both modeling and measuring the actual 
temperature of the seal, in combination with the large sensitivity to temperature.  

There is potential for improving the uncertainty assessment. The result from the probabilistic 
VMEA serves as an initial estimate of the measurement uncertainty for the hybrid testing set-
up. However, equally important, the VMEA workshops have also served as a platform for 
discussing the hybrid testing set-up, resulting in several new insights, which have helped the 
design and improvement work for the testing by highlighting the most significant sources of 
uncertainty.  
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8 User Case #2: IDOM 

8.1 Overview of the Test Rig  

User Case #2 is concerned with the wave energy converting technology developed by IDOM, 
which falls in the category of oscillating water column systems. In this case, the component 
identified as the most critical is the generator in the PTO system. As illustrated in the graphical 
wave-to-wire model of a generic WEC shown in Figure 34, the generator is part of the electrical 
PTO, which transforms mechanical power to electrical power. It interacts with the primary PTO 
(in this user case, an air turbine), with power electronics and the control system, in order to 
deliver electrical power to the grid. 

 

 

Figure 34: Wave-to-wire model of a generic WEC. 

 

A set of physical design parameters characterises the generator. During the workshops carried 
out within T6.2 of the VALID project and documented in VALID D6.3, (Nava and Ruiz Minguela, 
2023), IDOM has identified the following design parameters as the most influential for the most 
relevant evaluation areas: 

• Cut-out sea state (Hs, Tp) [m, s] 

• Rated power [kW] 

• Efficiency curve at partial loads (P/Prated) [-] 

• Rated power [kW] 

• Design life [year] 

• Redundancy level (no. of generators) [-] 

• Maximum to Nominal Voltage [-] 

• Response time [s] 

• Acceptable no of failed generators (𝑘 out of 𝑛) 

• Replacement time [hour] 

• Maintenance vessel cost [€/day] 

• Maintenance strategy [-] 

• Generator mass [kg] 

• Unit cost of the generator[€/kW] 
 



 

 
This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 101006927.  

 

 Page 91 of 119 
 

 

During the hybrid testing campaign, the following quantities will be directly measured, using 
the sensors described in VALID D4.2, (Lekube et al., 2023): 

• Current [A] 

• Rotational speed [rpm] 

• Stator Resistance [Ohm] 

• Temperature [ºC] 

• Torque [Nm] 

• Voltage [V] 

• Frequency [Hz] 
 

Some other quantities will be measured indirectly by postprocessing the direct measurements. 
The list of targeted indirect measurements includes, for example, the generator efficiency 
(which is evaluated by comparing the values of mechanical power at the shaft and electrical 
power output of the generator) and the motor current signature analysis (by analysing the 
electrical signals in the frequency domain).  

8.2 Basic VMEA 

As defined in Section 3.3, the basic VMEA aims to identify and roughly assess the main 
sources of uncertainty. Four sessions (April 27, May 13, June 14 and June 23, 2022) were 
held for carrying out the initial stages of the basic VMEA. After describing the methodology, 
the sessions were tailored in order to identity which are the most relevant uncertainties, their 
source (the virtual or physical environment) and potential strategies to be adopted for their 
reduction in the hybrid testing campaign for the electrical generator. Participants to the 
workshop were researchers from RISE as task leader and organiser of the event, TECNALIA 
as test rig manager, IDOM as User Case Leader, Y4C, AVL, BIMEP, and Delft University as 
contributors to the task. The outcome of the basic VMEA have been presented to VALID 
consortium during the VALID Technical Meeting on 29th September 2022. 

The structure of the following subsections follows the main stages of the methodology. 

8.2.1 Target Variable 

The target variable is the thermal fatigue life of the generator, and particularly of the stator 
windings insulation, which is indeed the critical component investigated in UC#2.  

The hybrid procedure developed in UC#2 is designed to test the performance of the electrical 
PTO under conditions that should realistically emulate significant sea scenarios for the 
insulation life in shorter time than it would take for a full-scale test in marine environment. 
Neither all the PTO components of the WEC nor environmental factors can be reproduced at 
laboratory scale. Figure 35 illustrates schematically the architecture of the test rig available at 
the premises of TECNALIA (the so-called “Electrical PTO lab”), clarifying which parts are 
physical devices representative of the actual components of the WEC (that is, generator, power 
electronics, and control system) and which ones are instead emulated by lab-scale equipment 
(that is, the electrical motor with dedicated inverter and control software which reproduce the 
mechanical loads produced by the air chamber and turbine in the actual WEC) or numerical 
models (that is, the sea states). Further details on the Electrical PTO lab and the test plan 
devised in UC#2 are reported in Deliverable 4.2.   

With the configuration shown in Figure 35, the hybrid testing protocol developed in UC#2 can 
be categorized as a form of hardware-in-the Loop test methodology. As described in VALID 
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D4.2, (Lekube et al., 2023),the initial configuration of the test rig has been adapted and updated 
in order to accomplish the objectives of the hybrid testing campaign (see Figure 36). 

 

 

Figure 35: Schematic view of the emulated or virtual and “real” or physical components in the 
hybrid test rig Electrical PTO Lab at TECNALIA. 

 

 

Figure 36: Final configuration of the test rig with the new generator installed. 

 

As stated in VALID D4.2, (Lekube et al., 2023), the materials of the winding insulation are 
Nomex® Based Laminate Type NMN and Dupont Mylar Dacron. The generators purchased 
for this User Case have Class F insulation in accordance with IEC 60034-1, which translates 
into the following temperature limits: 

• Maximum ambient temperature of 40°C 

• Permissible temperature rise of 105°C 

• Hotspot temperature margin of 10°C 

• Maximum winding temperature of 155°C 

 
In general, the target design life in such insulation class is up to 20,000 hours below the 
maximum rated temperature. 

Since the objective of UC#2 is the assessment of the thermal fatigue life of the generator, the 
design load cases (which are defined in terms of both sea and machine states) included in the 
test plan should represent not only normal operational conditions (FLS), but also extreme 
conditions (ULS), which potentially could lead to unwanted peaks of temperature in the 
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generator. The test campaign devised in UC#2 aims at estimating the thermal fatigue life of 
the generator and at characterizing the accumulated damage at the end of its service life. The 
test procedure is articulated in several stages (for a preliminary full description, we refer to 
VALID D4.2, (Lekube et al., 2023)): after the calibration stage, during the characterisation 
phase, a series of voltage peaks of appropriate duration is going to be imposed to the 
generator, in order to represent the state of damage that is expected to be induced by the 
environmental conditions at BiMEP. Then, during the validation phase, the generator will be 
excited by mechanical loads of the same magnitude that the component would experience 
under in-service conditions (that is, sea states).  

The main hypothesis is that the variation of temperature can lead to the failure of the critical 
component. For this reason, the test rig has been equipped with temperature sensors. Other 
factors, however, may affect the degradation of the stator windings, as humidity and salinity; 
however, the lack of an appropriate numerical model for these conditions and the impossibility 
of reproduce them appropriately in a dry test campaign introduce an element of uncertainty 
that is hard to quantify.  

The test campaign will be conducted at reduced physical and power scale. Additionally, the 
thermal properties of generators of different nominal power have been characterised in order 
to transfer the lab results into full scale. 

8.2.2 Identification of Uncertainty Sources 

During the first two sessions of the workshop, the effort was devoted mostly in the identification 
and classification of the uncertainty sources. The results are summarised in Figure 37.  
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Figure 37: Classification of the uncertainty sources for UC#2. 

 

The list of uncertainties originated from the discussion at the workshops but also from earlier 
analysis reported in other deliverables, e.g., FMECA, experience from other projects, and 
technical literature. 

The uncertainties have been classified under five families: 

• Environmental conditions: as mentioned in Section 8.2.1, it is difficult to reproduce in the 
experimental setup the specific harsh environment which the generator will be subject to. 
The presence of humidity and salinity as well other factors as dirt may affect the behaviour 
of the generator and it will not be modelled experimentally. 

• Virtual test rig: the models behind the simulation of realistic sea states, as well as the 
thermal and degradation model of the stator windings are affected by some level of 
inaccuracy due to their approximation to the reality. This is somehow related to the 
complexity of the models adopted and the trade-off between computational burden, need 
of real time simulation and accuracy. 
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• Physical test rig: several uncertainties affect the physical asset of the hybrid testing 
platform. Sensor accuracy, scale effects, calibration of control software parameters, the 
acceleration strategies and the motor can introduce sources of uncertainty. 

• Wear-out: the degradation due to ageing of the stator winding insulation is a potential 
source of uncertainty. 

• Manufacturing (including mounting): materials used for the insulation may introduce a 
source of uncertainty if the thermal characterisation is not accurate. 

 

8.2.3 Assessment of Uncertainties 

During the workshop, an analysis of the uncertainties has been carried out for UC#2. 

 

Table 16: Basic VMEA table for UC#2 after the initial workshops. 

Input Sensitivity  Uncertainty input  

Uncertainty components 𝑐𝑖 (1-10) 𝜎𝑖 (1-10) 

Environmental conditions  

Humidity, salinity, dirt 4 8 

Physical test rig 

Sensors performance  7 3 

Acceleration strategy 5 5 

Scaling 5 1 

Device emulator (motor) 5 1 

Analog/Digital converter (motor) 5 1 

Control software parameters (motor) 5 1 

Analog/Digital converter (generator) 5 1 

Control software parameters (generator) 5 1 

Virtual test rig 

Model of wave loads 6 3 

Thermal model of stator windings insulation 6 7 

Degradation model of stator windings insulation 6 7 

Wear-out 

Ageing of stator windings insulation 0 0 

Manufacturing  

Material thermal properties 7 7 

 

Each of the uncertainty sources were evaluated, following the procedure described in Section 
3, in terms of sensitivity (i.e. a quantification of the propagation of uncertainty from inputs to 
outputs) as well as in terms of uncertainty input (i.e. a measure on the dimension of the 
uncertainty) both in a range from 1 to 10.  
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The uncertainty sources were grouped into five categories: 

a. Environmental conditions: this category includes all the sources of uncertainty that are 
difficult to reproduce in a controlled environment or to accurately model numerically. 
Essentially, they refer to humidity, salinity, and dirt, which are present in the marine 
environment, but not in the test rig. Environmental factors represent chemical agents that 
accelerate the degradation of the stator winding insulation, a known effect which is hardly 
quantifiable In the hybrid testing platform of UC#2, environmental factors are characterised 
by significant uncertainty, but secondary impact on the life of the generator. 

b. Physical test rig: there are several uncertainty sources in the physical part of the hybrid 
platform, namely the sensors performance, the acceleration strategy, the scaling, the 
device emulator (motor), the analog/digital converter (motor), the control software 
parameters (motor), the analog/digital converter (generator) and the control software 
parameters (generator). Most of the categories are characterised by a medium value of 
sensitivity and low uncertainty, due to fact that the peaks of tension to be generated are 
fast but they can be emulated in a well-controlled manner. The sensor performance, 
however, is characterised by a higher sensitivity and a medium-to-low uncertainty, while 
the acceleration strategy is affected by a medium value of uncertainty. 

c. Virtual test rig: this category includes the epistemic uncertainty related to the model of 
wave loads, the thermal model of stator windings insulation as well as the degradation 
model of stator windings insulation. For all of them, it is given a high sensitivity (equal to 
6); however, the wave load modelling has a reduced uncertainty, while the thermal and 
degradation models are seen as more uncertain (up to 7). 

d. Wear-out: the ageing of stator windings insulation is considered not to induce any 
uncertainty, due to fact that a new generator is used for the hybrid testing. 

e. Manufacturing: in this category, all the issues pertinent to the thermal properties of the 
materials are included. They are considered to be highly important to account for, so a high 
sensitivity and uncertainty are assigned.  

 

8.2.4 Evaluation of Total Uncertainty 

The assessment results and their representation in terms of VRPN are reported in Figure 38 
and Table 17. In Figure 39, the VRPN contribution per group is reported. 
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Figure 38: VRPN of the source of uncertainties in UC#2. 

 

Table 17: VRPN of the source of uncertainties in UC#2. 

Uncertainty components Proportion 

Material thermal properties 28% 

Thermal model of stator windings insulation 21% 

Degradation model of stator windings insulation 21% 

Humidity, salinity, dirt 12% 

Acceleration strategy 7% 

Sensors’ performance  5% 

Model of wave loads 4% 
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Figure 39: VRPN of the uncertainty sources per group for UC#2. 

 

8.2.5 Conclusions and Lessons Learned 

The uncertainties are not well balanced among sources. Only seven sources of uncertainty 
contribute to the 100% of the total risk. In particular, the uncertainties due to the 
characterisation of the physical test rig is about 14% of the total risk. Similarly, the 
characterisation of the environmental condition represents about 12% of the total risk. It seems 
that the virtual test rig and the manufacturing can lead to higher uncertainties, because they 
are highly affected by the thermal properties of the materials (manufacturing) and by the 
degradation model. However, some of the uncertainties identified during the workshops still 
should be investigated, and require further analysis, especially in their quantification (e.g., the 
ageing of the insulation materials) 

8.3 Probabilistic VMEA 

The outcomes of the basic VMEA workshops were further elaborated in a follow-up series of 
workshops that addressed the quantification of the identified uncertainties using probabilistic 
VMEA. Four online sessions were arranged on these dates: 13th March, 24th March, 3 April, 20 
April. Participants to the workshop were researchers from RISE as task leader and organiser 
of the event, TECNALIA as test rig manager, IDOM as user case leader, Y4C, AVL, BIMEP, 
and Delft University as contributors to the task.  After describing the methodology, the sessions 
were tailored to illustrate possible approaches to the quantification of relevant variables for the 
user case, considering that several elements of the test procedure were still under 
development.  

The structure of the following subsections follows the main stages of the methodology. 
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8.3.1 Target Variable 

As in the basic VMEA, the target variable was the life of the winding insulation, under the 
assumption that thermal stress was the dominant degradation factor. The difference with 
respect to the basic VMEA is that a specific life model was selected here, in order to illustrate 
the quantification procedure.  

The life model considered in the probabilistic VMEA workshops was based on the analytical 
approach described in (Tshiloz et al., 2016) and it is mathematically described by the following 
expression: 

ln(𝐿) = 𝐶1 +
𝐶2(𝑇)

𝑇
≡ 𝑌, (73) 

where 𝐿 is the life of the generator, 𝑇 is the windings temperature and, at any given 𝑇, 𝐶1, 𝐶2(𝑇) 
are phenomenological parameters to be determined experimentally. 

While the details of the derivation of Eq. (73) are not reported here (they can be 
straightforwardly reconstructed from (Tshiloz et al., 2016)), it is worth mentioning the two main 
physical assumptions on which the model relies upon: 1) thermal stress is the dominant 
degradation mechanism for the windings insulation; 2) the rate of degradation 𝑘depends 
exponentially on temperature according to the Arrhenius’ model: 𝑘 = 𝐴 exp(−𝐸𝑎/𝑇), where 𝐴, 

𝐸𝑎 are phenomenological costants and 𝑇 the absolute temperature.  

The two parameters 𝐶1, 𝐶2(𝑇) in equation (73) are determined by imposing the empirically 
observed constraint denoted as “10 degrees rule”, which states that every 10 degrees increase 
in temperature halves the life of the generator.   

Every generator is designed to perform its intended function at a given temperature for 
minimum life span, depending on the class of the insulation material. For example, a generator 
in class F should work at least 20 000 hours at 155 °C. The expected life at given operating 
temperature is the criterion adopted to characterize the generator thermal “strength” (or 
endurance) in most of the industrial classification schemes, for example NEMA-G1 (see Figure 
40). The degradation process never stops, but it is significantly accelerated if the winding 
temperature rises above the operating temperature of the thermal class that characterises the 
generator.  

 

Figure 40: Thermal endurance curves (life vs temperature) for classification of generators in 
the NEMA-G1 scheme. 
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8.3.2 Uncertainty Sources 

The sources of uncertainty considered in the analysis were the three input variables of the life 
model: 𝑇, 𝐶1, and 𝐶2(𝑇).   

8.3.3 Assessment of Uncertainties 

The coefficients 𝐶1, 𝐶2 can be estimated from experimental data according to standardized 
procedures, such as those described in the standard EN 60034-18-21. 

In case to run dedicated characterization tests on the generator is not an option, one can still 
estimate 𝐶1, 𝐶2 and the associated uncertainty starting from the nominal values derived from 
the generator thermal classification (which should be known anyway from the manufacturer).  

For each class (e.g., A, B, F, H in NEMA-G1), nominal values for 𝐶1, 𝐶2(𝑇) can be derived. 
They might not well represent the actual state of the generator, especially if it has been in 
service already some time. Detailed information on the past history of the device might not be 
available. Actually only 𝐶1 discriminates between the different classes, 𝐶2 being the same (but 
dependent on temperature).  

Using a wrong 𝐶1 might entail to overestimate the resistance of the generator against thermal 
stress. For example, a class H generator might actually be closer to class F or B, which means 
significantly smaller thermal endurance than expected (hence, shorter expected life at given 
temperature). Table 18 shows the relative differences in 𝐶1 among the various NEMA-G1 
classes.    

 

Table 18:  The relative differences in parameter 𝐶1 among the various NEMA-G1 classes. 

C1 A B F H 

A 0% 8% 19% 27% 

B 8% 0% 10% 17% 

F 16% 9% 0% 7% 

H 21% 15% 6% 0% 

 

In contrast to the coefficients 𝐶1, 𝐶2, in the approach pursued in UC#2, the temperature is 
estimated numerically, using the analytical model presented in VALID D4.2, (Lekube et al., 
2023), which is reported below for reference with a slight change of notation (휃 → 𝑇): 

𝑇(𝑡) = 𝑇𝑆𝑆 (1 − 𝑒−
𝑡

𝜏) + 𝑇1𝑒
−
𝑡

𝜏, (74) 

where 𝑇𝑆𝑆 is the steady state temperature, 𝑇1 the initial temperature, and 𝜏 the characteristic 
response time of the winding temperature to thermal loads.   

The sensitivity coefficients can be evaluated analytically at any given temperature 𝑇∗: 

(
𝜕𝑌

𝜕𝐶1
)
∗
= 1, (

𝜕𝑌

𝜕𝐶2
)
∗
=

1

𝑇∗
, (

𝜕𝑌

𝜕𝑇
)
∗
= −

𝐶2
∗

𝑇∗2
. (75) 

 



 

 
This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 101006927.  

 

 Page 101 of 119 
 

8.3.4 Evaluation of Total Uncertainty 

For illustration purpose, suppose we have a generator of class F and that the thermal model 
returns a temperature in the insulation of 𝑇∗ =200 °C. Nominal values of 𝐶1, 𝐶2 for class F at 
that temperature are 𝐶1

∗ = 19.96, 𝐶2
∗ = −2633.96 °C.   

These values were corroborated by characterization tests which supported the belief that the 
generator can be actually considered as class F, in spite of having been already several years 
in service. The uncertainty in the estimated values for 𝐶1, 𝐶2 was quantified in 1%, based on 
the quality and quantity of available data and fitting procedure. Alternatively, the expected 
values of 𝐶1, 𝐶2 could have been corroborated – or not – by engineering judgment based on 
past experience with similar machines, perhaps allowing for a somewhat larger margin of error. 
The temperature value was estimated to be correct within a ±2 °C interval.   

The expected life of the generator is 𝐿∗ = exp (𝐶1
∗ +

𝐶2
∗(𝑇∗)

𝑇∗
) = 884 hours.  

Plugging these input data into the probabilistic VMEA formula for the uncertainty on the target 
variable, we get:  

𝑢𝑌 = √(1)∗
2𝑢𝐶1

2 + (
1

𝑇∗
)
∗

2
𝑢𝐶2
2 + (−

𝐶2
∗

𝑇∗2
)
∗

2
𝑢𝑇
2 = 0.27. (76) 

The variance of the target function can be decomposed in its components to evaluate the 
contributions of each input variable: 

𝑢𝑙𝑛𝐿
2 = 𝜏𝐶1

2 + 𝜏𝐶2
2 + 𝜏𝑇

2 (77) 

where 𝜏𝑋 ≡ (𝜕𝑌/𝜕𝑋)∗𝑢𝑋, see also Figure 41.  

 

 

Figure 41: Decomposition of the total variance of 𝑙𝑛(𝑙𝑖𝑓𝑒) into contributions from the three 
uncertain variables in the thermal model used to estimate the winding temperature. 

 

It can be readily shown that the absolute uncertainty in the logarithmic life equals the fractional 
uncertainty (that is, percentage) in life, that is:  

𝑢𝑙𝑛𝐿 ≅
𝑢𝐿

𝐿∗
→ 𝑢𝐿 ≅ 𝐿∗𝑢𝑙𝑛𝑡 = 241 hours (78) 

The result of the test can therefore be expressed as:  

𝐿 = 𝐿∗ ± 𝑢𝐿 = 884 ± 241hours. (79) 
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8.3.5 Conclusions and Lessons Learned 

The method highlights the importance of the modular approach to uncertainty analysis. It is 
recommended to start from the target variable and go backwards to map the interdependencies 
among all variables considered in the test procedure, each evaluated via numerical modelling 
or experiment. Moreover, the representation of the test method in terms of functional blocks is 
useful to understand how the uncertainty propagates from basic variables that are directly 
measured or computed to the overall target variable, that is component life, see Figure 42. 

 

 

Figure 42: The representation of the test method in terms of functional blocks, UC#2. 
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9 User Case #3: Wavepiston 

9.1 Overview of the Test Rig  

Wavepiston is a multi-body floating oscillating wave surge converter constructed by surging 
plates connected through beams. Each plate is attached to a wagon, that is connected to two 
telescopic hydraulic pumps. A unit of plate, wagon, support beam and pumps is called energy 
collector and is illustrated in Figure 43. The hydraulic pump pushes seawater through a 
transport pipe to a turbine. The wear of the hydraulic seals has been identified as a critical 
factor for the Wavepiston WEC. 

 

 

 

Figure 43: Overview of one Wavepiston energy collector and the seawater hydraulic pump. 

 

The hydraulic pump seal test rig is used to assess the wear on the seals and the wear on the 
rods of the hydraulic rams of the Wavepiston system. It mimics the translation in one degree 
of freedom motion of the primary PTO, which in turn is caused by the wave motion. An overview 
of the Wavepiston test rig is shown in Figure 44. The pump displacement actuation is controlled 
as hardware-in-the-loop by a ‘wave-to-wire’ simulation software that is modelling the wave and 
sea state and incorporating a hydrodynamic model to calculate the interaction between the 
waves and the energy collector.  
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Figure 44: Wavepiston test rig.  

 

9.2 Basic VMEA 

Three workshops were held in the spring of 2022 to perform basic VMEA analysis of the 
Wavepiston hybrid test method. 

9.2.1 Target Variable 

The target variable is the hydraulic seal life, as the wear of the seal is considered a critical 
factor for the WEC. The design life for the pump unit and seals is 7 years. External loads that 
have impact on this target variable are wave sea states, salinity, oxygen levels, temperature, 
marine growth and suspended particles. Internally, the displacement of the piston is important 
and in particular the motion reversion. 

9.2.2 Identification of Uncertainty Sources 

The identified sources of uncertainty are illustrated in Figure 45. They were divided into five 
different categories: environmental loads, physical test rig, numerical simulation, life & wearout 
and manufacturing. 
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Figure 45: Identified sources of uncertainty in measured seal life for UC#3, Wavepiston. 

 

9.2.3 Assessment of Uncertainties 

During the second Basic VMEA workshop, an assessment of the uncertainties in terms of 
sensitivity and uncertainty size was carried out. For the basic VMEA, the assessment of size 
and sensitivity is made on a scale from 1 to 10, and the result is found in Table 19. 

As the physical test rig does not include the marine growth impact, a post-processing model 
for seal life correction is needed. This correction introduces the marine growth uncertainty in 
the life & wearout category and, consequently, the identified uncertainty ‘Marine growth not 
included in test rig’ in the physical test rig category was set to zero. 
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Table 19: Uncertainty analysis in basic VMEA for UC#3, Wavepiston. 

 

 

9.2.4 Evaluation of Total Uncertainty 

The total variation is calculated as the square sum of the resulting variation from the sources, 
resulting in the total VRPN. The relative contribution of the VRPN from the different uncertainty 
sources are of interest rather than the absolute value of the total VRPN. The Pareto chart in 
Figure 46 shows the resulting ranking of the various uncertainty sources identified during the 
workshops, highlighting those ones which contribute most to the uncertainty of the target 
variable.  

Sensitivity 

Uncertainty 

input 

Uncertainty 

output

Uncertainty components ci (1-10) σi (1-10) τi = ci · σi

VRPN 

τi
2

VRPN 

proportion

Environmental conditions

Waves (Hs, Tp) 5 5 25.0 625 4%

Salinity 3 1 3.0 9 0%

Level of oxygen 2 3 6.0 36 0%

Bio fouling 7 6 42.0 1764 12%

Suspended particles 6 4 24.0 576 4%

Total 54.9 3010 21%

Physical test rig

Scaling of stroke 3 3 9.0 81 1%

Polution of test fluid 8 2 16.0 256 2%

Limit in velocity 3 3 9.0 81 1%

Alignment of piston 6 2 12.0 144 1%

Lack of inertial loads in test rig 2 2 4.0 16 0%

Marine growth not included in test rig 7 0 0.0 0 0%

Galvanic potential 9 1 9.0 81 1%

Oxygen level & temerature 7 2 14.0 196 1%

Total 29.2 855 6%

Virtual test rig (numerical simulations)

Modelling errors 6 6 36.0 1296 9%

Domain errors 3 3 9.0 81 1%

Discretization errors 2 2 4.0 16 0%

Truncation of model 6 6 36.0 1296 9%

Total 51.9 2689 19%

Life & wearout

Lack of seal wear and leakage models 7 7 49.0 2401 17%

Acceleration methods 7 7 49.0 2401 17%

Marine growth effects 7 7 49.0 2401 17%

Total 84.9 7203 50%

Manufacturing

Surface finish of piston 6 2 12.0 144 1%

Variation of material properties 3 5 15.0 225 2%

Diameter of seals and piston 2 2 4.0 16 0%

Handling during mounting of seals 3 5 15.0 225 2%

Total 24.7 610 4%

Total uncertainty 119.9 14367 100%

Result

Variation contribution

Input
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It can also be of interest to study the relative contribution of uncertainties between the five 
categories of uncertainties, as shown in Figure 47. Here we can observe that “Life & wearout” 
group contributes to 50% of the total variation. 

 

 

Figure 46: Pareto chart of uncertainties in basic VMEA for UC#3, Wavepiston. 
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Figure 47: The contribution by group of uncertainties in basic VMEA for UC#3, Wavepiston. 

 

9.2.5 Conclusions and Lessons Learned  

The largest contributions to the total seal life uncertainty indicate which uncertainty sources 
are most important to focus on when trying to reduce uncertainty. Candidates are: 

• Lack of seal wear and leakage models (17%) 

• Acceleration methods (17%) 

• Marine growth effects (17%) 

• Bio fouling assessment (12%) 

• Modelling errors (9%) 

• Truncation of model (9%) 

 

9.3 Probabilistic VMEA 

Four workshops were held in the spring of 2023 to perform the probabilistic VMEA analysis of 
the Wavepiston hybrid test method. After confirmation or update of the target variable definition 
and its sources for measurement uncertainty, from the basic VMEA workshop, each source 
uncertainty was this time estimated in physical units together with its impact on the target 
variable uncertainty, i.e., the sensitivity coefficient. 

It was decided to focus on the three uncertainty source categories that are directly involved in 
the hybrid testing execution, as the scope for the workshop. Uncertainties related to 
environmental conditions and manufacturing can instead be evaluated later following the same 
process. 
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9.3.1 Target Variable 

The target variable was confirmed to be the hydraulic seal life. Actually, when quantifying its 
variation due to uncertainty sources, the target variable was set to the logarithm of the seal 
life, 𝑌 = ln𝑁 = 𝑓(𝑋1, 𝑋2, … ), as suggested in section 3.4.1. and exemplified in section 3.4.6. 

9.3.2 Uncertainty Sources 

The set of sources of uncertainty identified during the basic VMEA was confirmed without 

any adjustment, see Figure 45. 

9.3.3 Assessment of Uncertainties 

An estimate of standard deviation was used to quantify the uncertainty of each uncertainty 
source. Almost all sources have uncertainty type B, because of lack of data from experiments. 
Experience and intuition were used in discussions to establish rough estimates during the 
workshop. It turned out to be easier to estimate contribution to the target variable uncertainty 
directly, without losing accuracy, instead of estimating the uncertainty in the source and its 
sensitivity coefficient. The source variation could also be difficult to measure, as for the rig 
water pollution as an example. This means that an uncertainty source was evaluated by giving 
an interval, typically, of the resulting seal life variation caused by the source variation. The 
sensitivity was set to 1 so that the source uncertainty measure was the same as the seal life 
uncertainty estimate.  

With the logarithm of life as target variable, it was favourable to use the approximation for 
percentage uncertainty as described in section 3.4.4. Hence, if the standard uncertainty is 10% 
in seal life, then the standard deviation of 𝑌 = ln𝑁 is approximately 0.1. The result from the 
uncertainty evaluation is shown in Table 20. The largest contributions to the seal life 
uncertainty are now the marine growth effects and the pollution of the test rig fluid. As an 
example, the latter uncertainty source was evaluated as follows. First, it was stated that the 
pollution needs to be well controlled in the rig. Even so, the uncertainty was estimated to have 
an impact on the seal life of at most ±25%. A uniform probability distribution was assumed 
within the interval of [-25%, +25%] of the expected life, which means that the standard deviation 

is 25%/√3 = 14%, using Eq. (15). 

One of the largest uncertainties from the basic VMEA, ‘Lack of seal wear and leakage models’ 
in the Life & wearout category, was set to zero in this evaluation, because it does not relate to 
the hybrid test method. 
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Table 20: Uncertainty analysis in probabilistic VMEA for UC#3, Wavepiston. Marine growth 
effects are included in the life & wearout category, not in the physical rig. 

 

 

9.3.4 Evaluation of Total Uncertainty 

The total uncertainty is calculated as the root sum of square of the resulting uncertainty from 
each source. The relative contribution, in terms of variance contribution, from the different 
uncertainty sources are presented in the last column in Table 20. The result is best illustrated 
by graphs. A Pareto chart in Figure 48 shows the resulting ranking of the various uncertainty 
sources identified during the workshops, highlighting those ones which contribute most to the 
uncertainty of the target variable.  
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Figure 48: Pareto chart of uncertainties in probabilistic VMEA for UC#3, Wavepiston. 

 

9.3.5 Conclusions and Lessons Learned  

With the focus on three of the uncertainty categories, in the probabilistic VMEA, which are 
related to the hybrid testing results, the largest contributions to the total seal life uncertainty 
are: 

• Marine growth effects (62%) 

• Pollution of test fluid (27%) 

 
Note that the marine growth effects are not possible to model in the current physical test rig. 
The marine growth impact is instead modelled by a correction factor in life. The large 
uncertainty in the marine growth effects is reflected by the lack of knowledge about this 
correction factor. 

  



 

 
This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 101006927.  

 

 Page 112 of 119 
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10 Nomenclature  

Abbreviations 

AEP Annual Energy Production 

EMRP European Metrology Research Programme 

FMEA Failure Mode and Effect Analysis 

FMECA Failure Mode, Effect and Criticality Analysis 

CAE Computer Aided Engineering 

CFD Computational Fluid Dynamics 

DoE Design of Experiments 

FLS Fatigue Limit State 

GUM Guide to the Expression of Uncertainty in Measurement 

HALT Highly Accelerated Life Test 

MSA Measurement System Analysis 

NAFEMS National Agency for Finite Element Methods and Standards 

PCE Polynomial Chaos Expansion 

PTO Power Take Off 

RANSE Reynolds-Avergaed Navier Stokes 

SA Sensitivity Analysis 

UQ Uncertainty Quantification 

ULS Ultimate Limit State 

V&V Verification and Validation 

VIM Vocabulaire international de métrologie  

(International Vocabulary of Metrology) 

VMEA Variation Mode and Effect Analysis 

VRPN Variation Risk Priority Number 

WEC Wave Energy Converter 
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